Fe-Al-Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union
PubMed
36295258
PubMed Central
PMC9610801
DOI
10.3390/ma15207189
PII: ma15207189
Knihovny.cz E-zdroje
- Klíčová slova
- Fe3Al-based cast iron aluminide, grain size, heat treatment, high-temperature yield stress, molybdenum and boron addition, titanium,
- Publikační typ
- časopisecké články MeSH
The effect of boron addition into Fe-28Al-5Si-X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe-28Al-5Si-2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition.
Zobrazit více v PubMed
Mc Kamey C.G. Iron Aluminides. In: Stoloff N.S., Sikka V.K., editors. Physical Metallurgy and Processing of Intermetallic Compounds. 2nd ed. Chapman & Hall; New York, NY, USA: 1996. pp. 351–391.
Morris D.G., Morris-Muñoz M.A. The influence of microstructure on the ductility of iron aluminides. Intermetallics. 1999;7:1121–1129. doi: 10.1016/S0966-9795(99)00038-2. DOI
Liu C.T., Mc Kamey C.G., Lee E.H. Environmental effects on room temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 1990;24:385–390. doi: 10.1016/0956-716X(90)90275-L. DOI
Stoloff N.S., Liu C.T. Environmental embrittlement of iron aluminides. Intermetallics. 1994;2:75–87. doi: 10.1016/0966-9795(94)90001-9. DOI
Zamanzade M., Barnoush A., Motz C. A review on the properties of iron aluminide intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Liu C.T., George E.P., Maziasz P.J., Schneibel J.H. Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng. A. 1998;258:84–98. doi: 10.1016/S0921-5093(98)00921-6. DOI
Bahadur A. Enhancement of high-temperature strength and room temperature ductility of iron aluminides by alloying. Mater. Sci. Technol. 2003;19:1627–1634. doi: 10.1179/026708303225008266. DOI
Fraczkiewicz A., Gay A.S., Biscondi M. On the boron effect in FeAl (B2) intermetallic alloys. Mater. Sci. Eng. A. 1998;258:108–114. doi: 10.1016/S0921-5093(98)00923-X. DOI
Liu C.T., George E.P. Effect of aluminum concentration and boron dopant on environmental embrittlement in FeAl aluminides. Mater. Res. Soc. Symp. Proc. 1991;213:527–532. doi: 10.1557/PROC-213-527. DOI
Fraczkiewicz A. Influence of boron on the mechanical properties of B2-ordered FeAl alloys. Mater. Trans. JIM. 2000;41:166–169. doi: 10.2320/matertrans1989.41.166. DOI
Cadel E., Lemarchand D., Gay A.S., Fraczkiewicz A., Blavette D. Atomic Scale Investigation of Boron Nanosegregation in Fe Al Intermetallics. Scripta Mater. 1999;41:421. doi: 10.1016/S1359-6462(99)00106-2. DOI
Lejček P., Fraczkiewicz A. Boron segregation in intermetallics: On the possible origins of a low-level intergranular segregation. Intermetallics. 2003;11:1053–1063. doi: 10.1016/S0966-9795(03)00135-3. DOI
Cadel E., Fraczkiewicz A., Blavette D. Suzuki effect on 001 stacking faults in boron-doped FeAl intermetallics. Scripta Mater. 2004;51:437–441. doi: 10.1016/j.scriptamat.2004.04.026. DOI
Briant C.L. Intergranular and cleavage fracture. In: Westbrook J.H., Fleischer R.L., editors. Intermetallic Compounds: Principles and Practice. 2nd ed. Volume 1. John Wiley & Sons; UK, Chichester: 1995. pp. 895–910.
Krein R., Schneider A., Sauthoff G., Frommeyer G. Microstructure and mechanical properties of Fe3Al-based alloys with strengthening boride precipitates. Intermetallics. 2007;15:1172–1182. doi: 10.1016/j.intermet.2007.02.005. DOI
Li X., Prokopcakova P., Palm M. Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Mater. Sci. Eng. A. 2014;611:234–241. doi: 10.1016/j.msea.2014.05.077. DOI
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Schneider A., Falat L., Sauthoff G., Frommeyer G. Mechanical properties of Fe–Al–M–C (MZTi, V, Nb, Ta) alloys with strengthening carbides and Laves phase. Intermetallics. 2005;13:1256–1262.
Cieslar M., Karlík M. Carbide formation in Zr-containing Fe3Al-based alloys. Mater. Sci. Eng. A. 2007;462:289–293. doi: 10.1016/j.msea.2006.01.173. DOI
Kratochvíl P., Vodičková V., Hanus P., Hakl J., Vlasák T., Pešička J. High-temperature mechanical properties of Fe3Al type alloy with combined additives TiB2 and Zr. Intermetallics. 2010;18:1365–1368. doi: 10.1016/j.intermet.2010.01.038. DOI
Kratochvíl P., Švec M., Vodičková V. The Effect of Low Concentrations Nb and C on the Structure and High-Temperature Strength of Fe3Al Aluminide. Metall. Mater. Trans. A. 2017;48:4093–4096. doi: 10.1007/s11661-017-4174-y. DOI
Palm M., Stein F., Dehm G. Iron Aluminides. Annu. Rev. Mater. Res. 2019;49:297–326. doi: 10.1146/annurev-matsci-070218-125911. DOI
Michalcová A., Senčekova L., Rolink G., Weisheit A., Pešička J., Stobik M., Palm M. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 2017;116:481–494. doi: 10.1016/j.matdes.2016.12.046. DOI
Doucakis T., Kumar K.S. Formation and stability of refractory metal diborides in an Fe3Al matrix. Intermetallics. 1999;7:765–777. doi: 10.1016/S0966-9795(98)00126-5. DOI
Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Pazourková Prokopčáková P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC
Švec M., Vodičková V., Hanus P., Pazourková Prokopčáková P., Čamek L., Moravec J. Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy. Materials. 2021;14:3031. doi: 10.3390/ma14113031. PubMed DOI PMC
Novák P., Michalcová A., Marek I., Mudrová M., Saksl K., Bednarcík J., Zikmund P., Vojtěch D. On the formation of intermetallics in Fe-Al system—An in situ XRD study. Intermetallics. 2013;32:127–136. doi: 10.1016/j.intermet.2012.08.020. DOI