Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34199604
PubMed Central
PMC8199641
DOI
10.3390/ma14113031
PII: ma14113031
Knihovny.cz E-zdroje
- Klíčová slova
- Fe3Al-based iron aluminide for high-temperature applications, coefficient of thermal expansion, high-temperature yield stress,
- Publikační typ
- časopisecké články MeSH
This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.
Zobrazit více v PubMed
Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Prokopčáková P.P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC
Stoloff N. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Deevi S., Sikka V. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics. 1996;4:357–375. doi: 10.1016/0966-9795(95)00056-9. DOI
McKamey C.G. Iron Aluminides. In: Stoloff N.S., Sikka V.K., editors. Physical Metallurgy and Processing of Intermetallic Compounds. Springer; Boston, MA, USA: 1996. pp. 351–391.
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Schneibel J., Specht E., Simpson W. Solid solution strengthening in ternary B2 iron aluminides containing 3d transition elements. Intermetallics. 1996;4:581–583. doi: 10.1016/0966-9795(96)00041-6. DOI
Falat L., Schneider A., Sauthoff G., Frommeyer G. Mechanical properties of Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase. Intermetallics. 2005;13:1256–1262. doi: 10.1016/j.intermet.2004.05.010. DOI
Stein F., Palm M., Sauthoff G. Structure and stability of Laves phases part II—structure type variations in binary and ternary systems. Intermetallics. 2005;13:1056–1074. doi: 10.1016/j.intermet.2004.11.001. DOI
Kratochvíl P., Švec M., Vodičková V. The Effect of Low Concentrations Nb and C on the Structure and High-Temperature Strength of Fe3Al Aluminide. Met. Mater. Trans. A. 2017;48:4093–4096. doi: 10.1007/s11661-017-4174-y. DOI
Kejzlar P., Kratochvíl P., Král R., Vodičková V. Phase Structure and High-Temperature Mechanical Properties of Two-Phase Fe-25Al-xZr Alloys Compared to Three-Phase Fe-30Al-xZr Alloys. Met. Mater. Trans. A. 2013;45:335–342. doi: 10.1007/s11661-013-1987-1. DOI
Kratochvíl P., Schindler I. Hot rolling of iron aluminide Fe28.4Al4.1Cr0.02Ce (at%) Intermetallics. 2007;15:436–438. doi: 10.1016/j.intermet.2006.06.005. DOI
Krein R., Schneider A., Sauthoff G., Frommeyer G. Microstructure and mechanical properties of Fe3Al-based alloys with strengthening boride precipitates. Intermetallics. 2007;15:1172–1182. doi: 10.1016/j.intermet.2007.02.005. DOI
Kratochvíl P., Vodičková V., Hakl J., Vlasák T., Hanus P., Pešička J. High temperature mechanical properties of Fe28Al4Cr alloy with additives TiB2 and Zr. Intermetallics. 2010;18:1365–1368. doi: 10.1016/j.intermet.2010.01.038. DOI
Šíma V., Kratochvíl P., Kozelský P., Schindler I., Hána P. FeAl-based alloys cast in an ultrasound field. Int. J. Mater. Res. 2009;100:382–385. doi: 10.3139/146.110041. DOI
Marker M.C., Skolyszewska-Kühberger B., Effenberger H.S., Schmetterer C., Richter K.W. Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics. 2011;19:1919–1929. doi: 10.1016/j.intermet.2011.05.003. PubMed DOI PMC
Li H., Zhang J., Young D.J. Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800 °C. Corros. Sci. 2012;54:127–138. doi: 10.1016/j.corsci.2011.09.006. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Novak P., Šerák J., Vojtěch D., Zelinková M., Mejzlíková L., Michalcová A. Effect of Alloying Elements on Microstructure and Properties of Fe-Al and Fe-Al-Si Alloys Produced by Reactive Sintering. Key Eng. Mater. 2011;465:407–410. doi: 10.4028/www.scientific.net/KEM.465.407. DOI
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Novák P., Nová K. Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Rubacha K., Godlewska E., Mars K. Behaviour of a silicon-rich coating on Ti-46Al-8Ta (at.%) in hot-corrosion environments. Corros. Sci. 2017;118:158–167. doi: 10.1016/j.corsci.2017.02.002. DOI
Kratochvíl P., Dobeš F., Vodičková V. The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9–3.8at.%) Intermetallics. 2009;17:39–45. doi: 10.1016/j.intermet.2008.09.004. DOI
Dobeš F., Kratochvíl P., Vodičková V. The effect of carbon and silicon additions on the creep properties of Fe-40 at. % Al type alloys at elevated temperatures. Intermetallics. 2011;19:1526–1532. doi: 10.1016/j.intermet.2011.05.024. DOI
Hidnert P., Krider H. Thermal expansion of aluminum and some aluminum alloys. J. Res. Natl. Inst. Stand. Technol. 1952;48:209. doi: 10.6028/jres.048.030. DOI
Hull F.C., Hwang S.K., Wells J.M., Jaffee R.I. Effect of composition on thermal expansion of alloys used in power generation. J. Mater. Eng. 1987;9:81–92. doi: 10.1007/BF02833790. DOI
Porter W., Maziasz P. Thermal expansion data on several iron- and nickel-aluminide alloys. Scr. Met. Mater. 1993;29:1043–1048. doi: 10.1016/0956-716X(93)90175-R. DOI
Svec M., Kejzlar P. The influence of ternary alloying element in iron aluminides on coefficient of thermal expansion. Met. Mater. 2016;54:83–89. doi: 10.4149/km_2016_2_83. DOI
Siemers C., Zahra B., Ksiezyk D., Rokicki P., Spotz Z., Fusova L., Rösler J., Saksl K. Chip Formation and Machinability of Nickel-Base Superalloys. Adv. Mater. Res. 2011;278:460–465. doi: 10.4028/www.scientific.net/AMR.278.460. DOI
Fe-Al-Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides