Load-Independent Hardness and Indentation Size Effect in Iron Aluminides
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
38730914
PubMed Central
PMC11084584
DOI
10.3390/ma17092107
PII: ma17092107
Knihovny.cz E-resources
- Keywords
- intermetallic compounds, load-independent hardness, microhardness,
- Publication type
- Journal Article MeSH
In this paper, an iron-aluminide intermetallic compound with cerium addition was subjected to Vickers microhardness testing. A full range of Vickers microhardness loadings was applied: 10, 25, 50, 100, 200, 300, 500, and 1000 g. Tests were conducted in two areas: 0.5 mm under the surface of the rolled specimen and in the center. The aim was to find the optimal loading range that gives the true material microhardness, also deemed load-independent hardness, HLIH. The results suggest that in the surface area, the reverse indentation size effect (RISE) occurred, similar to ceramics and brittle materials, while in the center, indentation size effect (ISE) behavior was obtained, more similar to metals. This clearly indicated an optimal microhardness of over 500 g in the surface region and over 100 g in the central region of the specimen. Load dependencies were quantitatively described by Meyer's law, proportional specimen resistance (PSR), and the modified PSR model. The modified PSR model proved to be the most adequate.
See more in PubMed
Furukawa S., Komatsu T. Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catal. 2017;7:735–765. doi: 10.1021/acscatal.6b02603. DOI
Askeland D.R., Fulay P.P., Wright W.J. The Science and Engineering of Materials. 6th ed. Cengage Learning; Stamford, CT, USA: 2010. pp. 414–416.
Yartys V., Lototskyy M. Laves type intermetallic compounds as hydrogen storage materials: A review. J. Alloys Compd. 2022;916:165219. doi: 10.1016/j.jallcom.2022.165219. DOI
Armbruster M. Intermetallic compounds in catalysis—A versatile class of materials meets interesting challenges. Sci. Technol. Adv. Mater. 2020;21:303–322. doi: 10.1080/14686996.2020.1758544. PubMed DOI PMC
Dasgupta A., Rioux R.M. Intermetallics in catalysis: An exciting subset of multimetallic catalysts. Catal. Today. 2019;330:2–15. doi: 10.1016/J.CATTOD.2018.05.048. DOI
Chiu W.-T., Fuchiwaki K., Umise A., Tahara M., Inamura T., Hosoda H. Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti–Au–Ta Biomaterials. Materials. 2021;14:5810. doi: 10.3390/ma14195810. PubMed DOI PMC
Shimoga G., Kim T.H., Kim S.Y. An intermetallic NiTi-based shape memory coil spring for actuator technologies. Metals. 2021;11:1212. doi: 10.3390/met11081212. DOI
Reyes-Damián C., Morales F., Martínez-Piñeiro E., Escudero R. High-Pressure Effects on the Intermetallic Superconductor Ti0.85Pd0.15. J. Supercond. Nov. Magn. 2020;33:2601–2607. doi: 10.1007/s10948-020-05480-8. DOI
Liu S., Zhang J., Xia M., Xu C., Zhou W., Wu G., Xu X., Qian B., Shi Z. Electronic properties of PuNi3-type intermetallic superconductor LaRh3. Phys. C Supercond. Appl. 2020;572:1353619. doi: 10.1016/j.physc.2020.1353619. DOI
Avdeeva V., Bazhina A., Antipov M., Stolin A., Bazhin P. Relationship between Structure and Properties of Intermetallic Materials Based on γ-TiAl Hardened In Situ with Ti3Al. Metals. 2023;13:1002. doi: 10.3390/met13061002. DOI
Wang H., He Q.F., Yang Y. High-entropy intermetallics: From alloy design to structural and functional properties. Rare Met. 2022;41:1989–2001. doi: 10.1007/s12598-021-01926-7. DOI
Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R., Letizia Ruello M. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/MA10030285. PubMed DOI PMC
Kratochvíl P., Schindler I., Hanus P. Conditions for the hot rolling of Fe3Al-type iron aluminide. Kovove Mat. 2006;44:321–326.
Kant R., Prakash U., Agarwala V., Satya Prasad V.V. Wear behaviour of an FeAl intermetallic alloy containing carbon and titanium. Intermetallics. 2015;61:21–26. doi: 10.1016/j.intermet.2015.02.013. DOI
Nayak S.S., Wollgarten M., Banhart J., Pabi S.K., Murty B.S. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2010;527:2370–2378. doi: 10.1016/j.msea.2009.12.044. DOI
Basariya M.R., Srivastava V.C., Mukhopadhyay N.K. Inverse Hall–Petch like behaviour in a mechanically milled nanocrystalline Al5Fe2 intermetallic phase. Philos. Mag. 2016;96:2445–2456. doi: 10.1080/14786435.2016.1204474. DOI
Basariya M.R., Roy R.K., Pramanick A.K., Srivastava V.C., Mukhopadhyay N.K. Structural transition and softening in Al-Fe intermetallic compounds induced by high energy ball milling. Mater. Sci. Eng. A. 2015;638:282–288. doi: 10.1016/j.msea.2015.04.076. DOI
Massalski T., Massalski T.B., Oram O.H. Binary Alloy Phase Diagrams. American Society for Metals; Metals Park, OH, USA: 1986. p. 628.
Dobránsky J., Baron P., Simkulet V., Kočiško M., Ružbarský J., Vojnová E. Examination of material manufactured by direct metal laser sintering (DMLS) Metalurgija. 2015;54:477–480.
Balos S., Sidjanin L., Pilic B. Indentation Size Effect in Autopolymerized and Microwave Post Treated Poly(methyl methacrylate) Denture Reline Resins. Acta Polytech. Hung. 2014;11:239–249. doi: 10.12700/aph.11.07.2014.07.15. DOI
Peng C., Zeng F. Modeling the indentation size effects of polymers, based on couple stress elasticity and shear transformation plasticity. Arch. Appl. Mech. 2022;92:3661–3681. doi: 10.1007/s00419-022-02255-6. DOI
Lin H., Jin T., Lv L., Ai Q. Indentation Size Effect in Pressure-Sensitive Polymer Based on A Criterion for Description of Yield Differential Effects and Shear Transformation-Mediated Plasticity. Polymers. 2019;11:412. doi: 10.3390/polym11030412. PubMed DOI PMC
Gong J., Li Y. Energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 2000;35:209–213. doi: 10.1023/A:1004777607553. DOI
Marwaha R.K., Shah B.S. Microhardness studies on benzoic acid single crystals. Cryst. Res. Technol. 1988;23:K63–K65. doi: 10.1002/CRAT.2170230423. DOI
Balos S., Rajnovic D., Sidjanin L., Eric Cekic O., Moraca S., Trivkovic M., Dedic M. Vickers hardness indentation size effect in selective laser melted MS1 maraging steel. Proc. Inst. Mech. Eng. C. 2019;235:1724–1730. doi: 10.1177/0954406219892301. DOI
Balos S., Rajnovic D., Sidjanin L., Ciric Kostic S., Bogojevic N., Pecanac M., Pavlicevic J. Knoop hardness optimal loading in measuring microhardness of maraging steel obtained by selective laser melting. Proc. Inst. Mech. Eng. C. 2019;235:1872–1877. doi: 10.1177/0954406219841081. DOI
Şahin O., Uzun O., Kölemen U., Uçar N. Dynamic hardness and reduced modulus determination on the (001) face ofβ-Sn single crystals by a depth sensing indentation technique. J. Phys. Condens. Matter. 2007;19:306001. doi: 10.1088/0953-8984/19/30/306001. DOI
Ma Q., Clarke D.R. Size dependent hardness of silver single crystals. J. Mater. Res. 1995;10:853–863. doi: 10.1557/JMR.1995.0853. DOI
Nix W.D., Gao H., Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0. DOI
Kratochvíl P., Pešička J., Hakl J., Vlasák T., Hanus P. Creep behaviour of intermetallic Fe–28Al–3Cr alloy with Ce addition. J. Alloys Compd. 2004;378:258–262. doi: 10.1016/j.jallcom.2003.11.163. DOI
Kratochvíl P., Málek P., Pešička J., Hakl J., Vlasák T., Hanus P. High-temperature deformation of Fe3 Al alloys with TiB2 or Ce additions. Kovove Mater. 2006;44:185–190.
Stoloff N.S., Liu C.T. Environmental embrittlement of iron aluminides. Intermetallics. 1996;2:75–87. doi: 10.1016/0966-9795(94)90001-9. DOI
Trzepiecinski T., Lemu H.G. A Three-Dimensional Elastic-Plastic Contact Analysis of Vickers Indenter on a Deep Drawing Quality Steel Sheet. Materials. 2019;12:2153. doi: 10.3390/ma12132153. PubMed DOI PMC
Weiler W. The Relationship between Vickers Hardness and Universal Hardness. Surf. Technol. 1992;79:53–55.
Muchtar A., Lim L.C., Lee K.H. Finite element analysis of vickers indentation cracking processes in brittle solids using elements exhibiting cohesive post-failure behaviour. J. Mater. Sci. 2003;38:235–243. doi: 10.1023/A:1021192911257. DOI