Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Project No. 17-13573S
Grantová Agentura České Republiky
1
CSRD VA - United States
PubMed
31991866
PubMed Central
PMC7040714
DOI
10.3390/ma13030578
PII: ma13030578
Knihovny.cz E-zdroje
- Klíčová slova
- ductility, fracture, multi principal element alloy, powder, tensile strength,
- Publikační typ
- časopisecké články MeSH
The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three Ni1.5Co1.5CrFeTiX alloys with X = 0.3; 0.5 and 0.7 were produced by mechanical alloying and spark plasma sintering. Additional annealing heat treatment at 1100 °C was utilized to obtain homogenous single-phase face centered cubic (FCC) microstructures, with minor oxide inclusions. The results show that Ti increases the strength of the alloys by increasing the average atomic size misfit i.e., solid solution strengthening. An excellent combination of mechanical properties can be obtained by the proposed method. For instance, annealed Ni1,5Co1,5CrFeTi0.7 alloy possessed the ultimate tensile strength as high as ~1600 MPa at a tensile ductility of ~9%, despite the oxide contamination. The presented results may serve as a guideline for future alloy design of novel, inclusion-tolerant materials for sustainable metallurgy.
Zobrazit více v PubMed
Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI
Wei X.F., Liu J.X., Li F., Qin Y., Liang Y.C., Zhang G.J. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 2019;39:2989–2994. doi: 10.1016/j.jeurceramsoc.2019.04.006. DOI
Ding J., Yu Q., Asta M., Ritchie R.O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. USA. 2018;115:8919–8924. doi: 10.1073/pnas.1808660115. PubMed DOI PMC
Luo H., Li Z., Lu W., Ponge D., Raabe D. Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corros. Sci. 2018;136:403–408. doi: 10.1016/j.corsci.2018.03.040. DOI
Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X. DOI
Moravcik I., Gouvea L., Cupera J., Dlouhy I. Preparation and properties of medium entropy CoCrNi/boride metal matrix composite. J. Alloys Compd. 2018;748:979–988. doi: 10.1016/j.jallcom.2018.03.204. DOI
Wei S., Kim J., Tasan C.C. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys. Acta Mater. 2019;168:76–86. doi: 10.1016/j.actamat.2019.01.036. DOI
Gorsse S., Miracle D.B., Senkov O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017;135:177–187. doi: 10.1016/j.actamat.2017.06.027. DOI
Luo H., Li Z., Mingers A.M., Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018;134:131–139. doi: 10.1016/j.corsci.2018.02.031. DOI
Moravcik I., Hadraba H., Li L., Dlouhy I., Raabe D., Li Z. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility. Scr. Mater. 2020;178:391–397. doi: 10.1016/j.scriptamat.2019.12.007. DOI
Moravcikova-Gouvea L., Moravcik I., Omasta M., Vesely J., Cizek J., Minarik P., Cupera J., Zadera A., Jan V., Dlouhy I. High-strength Al0.2 Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2019;159:110046. doi: 10.1016/j.matchar.2019.110046. DOI
Moravcik I., Cizek J., Zapletal J., Kovacova Z., Vesely J., Minarik P., Kitzmantel M., Neubauer E., Dlouhy I. Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Des. 2017;119:141–150. doi: 10.1016/j.matdes.2017.01.036. DOI
Chuang M.H., Tsai M.H., Wang W.R., Lin S.J., Yeh J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317. doi: 10.1016/j.actamat.2011.06.041. DOI
Moravcik I., Gouvea L., Hornik V., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 2018;157:24–29. doi: 10.1016/j.scriptamat.2018.07.034. DOI
Chang Y.J., Yeh A.C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd. 2015;653:379–385. doi: 10.1016/j.jallcom.2015.09.042. DOI
Toda-Caraballo I., Rivera-Díaz-del-Castillo P.E.J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14–23. doi: 10.1016/j.actamat.2014.11.014. DOI
Hume-Rothery W., Coles B.R. The transition metals and their alloys. Adv. Phys. 1954;3:149–242. doi: 10.1080/00018735400101193. DOI
Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021. DOI
Chen H., Kauffmann A., Laube S., Choi I.C., Schwaiger R., Huang Y., Lichtenberg K., Müller F., Gorr B., Christ H.J., et al. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys. Metall. Mater. Trans. A. 2017;49:772–781. doi: 10.1007/s11661-017-4386-1. DOI
Takeuchi A., Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005;46:2817–2829. doi: 10.2320/matertrans.46.2817. DOI
Varalakshmi S., Kamaraj M., Murty B.S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A. 2010;527:1027–1030. doi: 10.1016/j.msea.2009.09.019. DOI
Dieter G.E., Bacon D. Mechanical Metallurgy. 3rd ed. Mc Graw-Hill Book Co.; New York, NY, USA: 1986.
Christofidou K.A., McAuliffe T.P., Mignanelli P.M., Stone H.J., Jones N.G. On the prediction and the formation of the sigma phase in CrMnCoFeNix high entropy alloys. J. Alloys Compd. 2019;770:285–293. doi: 10.1016/j.jallcom.2018.08.032. DOI
Heo Y.U., Takeguchi M., Furuya K., Lee H.C. Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe–Ni–Ti alloy. Acta Mater. 2009;57:1176–1187. doi: 10.1016/j.actamat.2008.10.056. DOI
Pickering E.J., Muñoz-Moreno R., Stone H.J., Jones N.G. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 2016;113:106–109. doi: 10.1016/j.scriptamat.2015.10.025. DOI
Zaefferer S., Elhami N.N. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 2014;75:20–50. doi: 10.1016/j.actamat.2014.04.018. DOI
Shishkin A., Drozdova M., Kozlov V., Hussainova I., Lehmhus D. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals. 2017;7:16. doi: 10.3390/met7010016. DOI
Shishkin A., Hussainova I., Kozlov V., Lisnanskis M., Leroy P., Lehmhus D. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams. JOM. 2018;70:1319–1325. doi: 10.1007/s11837-018-2886-0. DOI
Mecking H., Kocks U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–1875. doi: 10.1016/0001-6160(81)90112-7. DOI
Noell P.J., Carroll J.D., Boyce B.L. The Mechanisms of Ductile Rupture. Acta Mater. 2018;161:83–98. doi: 10.1016/j.actamat.2018.09.006. DOI
Labusch R. A Statistical Theory of Solid Solution Hardening. Phys. Status Solidi. 1970;41:659–669. doi: 10.1002/pssb.19700410221. DOI
Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI
Rombach G. Raw material supply by aluminium recycling—Efficiency evaluation and long-term availability. Acta Mater. 2013;61:1012–1020. doi: 10.1016/j.actamat.2012.08.064. DOI
Fu Z., MacDonald B.E., Dupuy A.D., Wang X., Monson T.C., Delaney R.E., Pearce C.J., Hu K., Jiang Z., Zhou Y., et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Appl. Mater. Today. 2019;15:590–598. doi: 10.1016/j.apmt.2019.04.014. DOI
Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization
Novel High-Entropy Aluminide-Silicide Alloy
Advanced Powder Metallurgy Technologies