Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys

. 2020 Jan 26 ; 13 (3) : . [epub] 20200126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31991866

Grantová podpora
Project No. 17-13573S Grantová Agentura České Republiky
1 CSRD VA - United States

The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three Ni1.5Co1.5CrFeTiX alloys with X = 0.3; 0.5 and 0.7 were produced by mechanical alloying and spark plasma sintering. Additional annealing heat treatment at 1100 °C was utilized to obtain homogenous single-phase face centered cubic (FCC) microstructures, with minor oxide inclusions. The results show that Ti increases the strength of the alloys by increasing the average atomic size misfit i.e., solid solution strengthening. An excellent combination of mechanical properties can be obtained by the proposed method. For instance, annealed Ni1,5Co1,5CrFeTi0.7 alloy possessed the ultimate tensile strength as high as ~1600 MPa at a tensile ductility of ~9%, despite the oxide contamination. The presented results may serve as a guideline for future alloy design of novel, inclusion-tolerant materials for sustainable metallurgy.

Zobrazit více v PubMed

Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI

George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI

Wei X.F., Liu J.X., Li F., Qin Y., Liang Y.C., Zhang G.J. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 2019;39:2989–2994. doi: 10.1016/j.jeurceramsoc.2019.04.006. DOI

Ding J., Yu Q., Asta M., Ritchie R.O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. USA. 2018;115:8919–8924. doi: 10.1073/pnas.1808660115. PubMed DOI PMC

Luo H., Li Z., Lu W., Ponge D., Raabe D. Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corros. Sci. 2018;136:403–408. doi: 10.1016/j.corsci.2018.03.040. DOI

Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X. DOI

Moravcik I., Gouvea L., Cupera J., Dlouhy I. Preparation and properties of medium entropy CoCrNi/boride metal matrix composite. J. Alloys Compd. 2018;748:979–988. doi: 10.1016/j.jallcom.2018.03.204. DOI

Wei S., Kim J., Tasan C.C. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys. Acta Mater. 2019;168:76–86. doi: 10.1016/j.actamat.2019.01.036. DOI

Gorsse S., Miracle D.B., Senkov O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017;135:177–187. doi: 10.1016/j.actamat.2017.06.027. DOI

Luo H., Li Z., Mingers A.M., Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018;134:131–139. doi: 10.1016/j.corsci.2018.02.031. DOI

Moravcik I., Hadraba H., Li L., Dlouhy I., Raabe D., Li Z. Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility. Scr. Mater. 2020;178:391–397. doi: 10.1016/j.scriptamat.2019.12.007. DOI

Moravcikova-Gouvea L., Moravcik I., Omasta M., Vesely J., Cizek J., Minarik P., Cupera J., Zadera A., Jan V., Dlouhy I. High-strength Al0.2 Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2019;159:110046. doi: 10.1016/j.matchar.2019.110046. DOI

Moravcik I., Cizek J., Zapletal J., Kovacova Z., Vesely J., Minarik P., Kitzmantel M., Neubauer E., Dlouhy I. Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Des. 2017;119:141–150. doi: 10.1016/j.matdes.2017.01.036. DOI

Chuang M.H., Tsai M.H., Wang W.R., Lin S.J., Yeh J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317. doi: 10.1016/j.actamat.2011.06.041. DOI

Moravcik I., Gouvea L., Hornik V., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 2018;157:24–29. doi: 10.1016/j.scriptamat.2018.07.034. DOI

Chang Y.J., Yeh A.C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd. 2015;653:379–385. doi: 10.1016/j.jallcom.2015.09.042. DOI

Toda-Caraballo I., Rivera-Díaz-del-Castillo P.E.J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14–23. doi: 10.1016/j.actamat.2014.11.014. DOI

Hume-Rothery W., Coles B.R. The transition metals and their alloys. Adv. Phys. 1954;3:149–242. doi: 10.1080/00018735400101193. DOI

Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021. DOI

Chen H., Kauffmann A., Laube S., Choi I.C., Schwaiger R., Huang Y., Lichtenberg K., Müller F., Gorr B., Christ H.J., et al. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys. Metall. Mater. Trans. A. 2017;49:772–781. doi: 10.1007/s11661-017-4386-1. DOI

Takeuchi A., Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005;46:2817–2829. doi: 10.2320/matertrans.46.2817. DOI

Varalakshmi S., Kamaraj M., Murty B.S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A. 2010;527:1027–1030. doi: 10.1016/j.msea.2009.09.019. DOI

Dieter G.E., Bacon D. Mechanical Metallurgy. 3rd ed. Mc Graw-Hill Book Co.; New York, NY, USA: 1986.

Christofidou K.A., McAuliffe T.P., Mignanelli P.M., Stone H.J., Jones N.G. On the prediction and the formation of the sigma phase in CrMnCoFeNix high entropy alloys. J. Alloys Compd. 2019;770:285–293. doi: 10.1016/j.jallcom.2018.08.032. DOI

Heo Y.U., Takeguchi M., Furuya K., Lee H.C. Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe–Ni–Ti alloy. Acta Mater. 2009;57:1176–1187. doi: 10.1016/j.actamat.2008.10.056. DOI

Pickering E.J., Muñoz-Moreno R., Stone H.J., Jones N.G. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 2016;113:106–109. doi: 10.1016/j.scriptamat.2015.10.025. DOI

Zaefferer S., Elhami N.N. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 2014;75:20–50. doi: 10.1016/j.actamat.2014.04.018. DOI

Shishkin A., Drozdova M., Kozlov V., Hussainova I., Lehmhus D. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals. 2017;7:16. doi: 10.3390/met7010016. DOI

Shishkin A., Hussainova I., Kozlov V., Lisnanskis M., Leroy P., Lehmhus D. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams. JOM. 2018;70:1319–1325. doi: 10.1007/s11837-018-2886-0. DOI

Mecking H., Kocks U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–1875. doi: 10.1016/0001-6160(81)90112-7. DOI

Noell P.J., Carroll J.D., Boyce B.L. The Mechanisms of Ductile Rupture. Acta Mater. 2018;161:83–98. doi: 10.1016/j.actamat.2018.09.006. DOI

Labusch R. A Statistical Theory of Solid Solution Hardening. Phys. Status Solidi. 1970;41:659–669. doi: 10.1002/pssb.19700410221. DOI

Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI

Rombach G. Raw material supply by aluminium recycling—Efficiency evaluation and long-term availability. Acta Mater. 2013;61:1012–1020. doi: 10.1016/j.actamat.2012.08.064. DOI

Fu Z., MacDonald B.E., Dupuy A.D., Wang X., Monson T.C., Delaney R.E., Pearce C.J., Hu K., Jiang Z., Zhou Y., et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Appl. Mater. Today. 2019;15:590–598. doi: 10.1016/j.apmt.2019.04.014. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization

. 2021 Oct 03 ; 14 (19) : . [epub] 20211003

Novel High-Entropy Aluminide-Silicide Alloy

. 2021 Jun 25 ; 14 (13) : . [epub] 20210625

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...