Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Project No. 19-22016S
Czech Science Foundation
project number FSI-S-20-6313
Brno University of Technology
PubMed
34640189
PubMed Central
PMC8510135
DOI
10.3390/ma14195796
PII: ma14195796
Knihovny.cz E-resources
- Keywords
- mechanical alloying, mechanical properties, microstructures, refractory complex concentrated alloys, spark plasma sintering,
- Publication type
- Journal Article MeSH
This paper reports the microstructural evolution and mechanical properties of a low-density Al0.3NbTa0.8Ti1.5V0.2Zr refractory high-entropy alloy (RHEA) prepared by means of a combination of mechanical alloying and spark plasma sintering (SPS). Prior to sintering, the morphology, chemical homogeneity and crystal structures of the powders were thoroughly investigated by varying the milling times to find optimal conditions for densification. The sintered bulk RHEAs were produced with diverse feedstock powder conditions. The microstructural development of the materials was analyzed in terms of phase composition and constitution, chemical homogeneity, and crystallographic properties. Hardness and elastic constants also were measured. The calculation of phase diagrams (CALPHAD) was performed to predict the phase changes in the alloy, and the results were compared with the experiments. Milling time seems to play a significant role in the contamination level of the sintered materials. Even though a protective atmosphere was used in the entire manufacturing process, carbide formation was detected in the sintered bulks as early as after 3 h of powder milling. Oxides were observed after 30 h due to wear of the high-carbon steel milling media and SPS consolidation. Ten hours of milling seems sufficient for achieving an optimal equilibrium between microstructural homogeneity and refinement, high hardness and minimal contamination.
Central European Institute of Technology Purkynova 123 61200 Brno Czech Republic
RHP Technology GmbH Forschungs und Technologiezentrum 2444 Seibersdorf Austria
See more in PubMed
Senkov O.N., Miracle D.B., Chaput K.J., Couzinie J.-P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018;33:3092–3128. doi: 10.1557/jmr.2018.153. DOI
Chen J., Zhou X., Wang W., Liu B., Lv Y., Yang W., Xu D., Liu Y. A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 2018;760:15–30. doi: 10.1016/j.jallcom.2018.05.067. DOI
Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J., Klement U., Guo S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016;120:164902. doi: 10.1063/1.4966659. DOI
Borg C.K.H., Frey C., Moh J., Pollock T.M., Gorsse S., Miracle D.B., Senkov O.N., Meredig B., Saal J.E. Expanded dataset of mechanical properties and observed phases of multi-principal element alloys. Sci. Data. 2020;7:430. doi: 10.1038/s41597-020-00768-9. PubMed DOI PMC
Senkov O.N., Miracle D.B., Rao S.I. Correlations to improve room temperature ductility of refractory complex concentrated alloys. Mater. Sci. Eng. A. 2021;820:141512. doi: 10.1016/j.msea.2021.141512. DOI
Mareska F., Curtin W.A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K. Acta Mater. 2020;182:235–249. doi: 10.1016/j.actamat.2019.10.015. DOI
Senkov N.O., Isheim D., Seidman N.D., Pilchak L.A. Development of a Refractory High Entropy Superalloy. Entropy. 2016;18:102. doi: 10.3390/e18030102. DOI
Chen H., Kauffmann A., Seils S., Boll T., Liebscher C.H., Harding I., Kumar K.S., Szabó D.V., Schlabach S., Kauffmann-Weiss S., et al. Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al. Acta Mater. 2019;176:123–133. doi: 10.1016/j.actamat.2019.07.001. DOI
Miracle D.B., Tsai M.-H., Senkov O.N., Soni V., Banerjee R. Refractory high entropy superalloys (RSAs) Scr. Mater. 2020;187:445–452. doi: 10.1016/j.scriptamat.2020.06.048. DOI
Reed R.C. The Superalloys: Fundamentals and Applications. 1st ed. Cambridge University Press; Cambridge, UK: 2008.
De Almeida Gouvea L.M. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2021. Metal Matrix Composites Prepared by Powder Metallurgy Route.
Senkov O.N., Jensen J.K., Pilchak A.L., Miracle D.B., Fraser H.L. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 2018;139:498–511. doi: 10.1016/j.matdes.2017.11.033. DOI
Qi L., Chrzan D.C. Tuning Ideal Tensile Strengths and Intrinsic Ductility of bcc Refractory Alloys. Phys. Rev. Lett. 2014;112:115503. doi: 10.1103/PhysRevLett.112.115503. PubMed DOI
Soni V., Senkov O.N., Gwalani B., Miracle D.B., Banerjee R. Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. Sci. Rep. 2018;8:8816. doi: 10.1038/s41598-018-27144-3. PubMed DOI PMC
Soni V., Gwalani B., Alam T., Dasari S., Zheng Y., Senkov O.N., Miracle D., Banerjee R. Phase Inversion in a Two-phase, BCC+B2, Refractory High Entropy Alloy. Acta Mater. 2019;185:89–97. doi: 10.1016/j.actamat.2019.12.004. DOI
Soni V., Senkov O.N., Couzinie J.-P., Zheng Y., Gwalani B., Banerjee R. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia. 2020;9:100569. doi: 10.1016/j.mtla.2019.100569. DOI
George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI
Praveen S., Kim H.S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications—An Overview. Adv. Eng. Mater. 2018;20:1700645. doi: 10.1002/adem.201700645. DOI
Moravcikova-Gouvea L., Moravcik I., Omasta M., Veselý J., Cizek J., Minárik P., Cupera J., Záděra A., Jan V., Dlouhy I. High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2020;159:110046. doi: 10.1016/j.matchar.2019.110046. DOI
Waseem O.A., Ryu H.J. Powder Metallurgy Processing of a W(x)TaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications. Sci. Rep. 2017;7:1926. doi: 10.1038/s41598-017-02168-3. PubMed DOI PMC
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
De J., Umarji A.M., Chattopadhyay K. Origin of contamination and role of mechanochemistry during mechanical alloying: The case of Ag–Te alloys. Mater. Sci. Eng. A. 2007;449–451:1062–1066. doi: 10.1016/j.msea.2006.02.268. DOI
Moravcik I., Kubicek A., Moravcikova-Gouvea L., Adam O., Kana V., Pouchly V., Zadera A., Dlouhy I. The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering. Metals. 2020;10:1186. doi: 10.3390/met10091186. DOI
Nganbe M., Heilmaier M. High temperature strength and failure of the Ni-base superalloy PM 3030. Int. J. Plast. 2009;25:822–837. doi: 10.1016/j.ijplas.2008.06.005. DOI
Eiselt C.C., Schendzielorz H., Seubert A., Hary B., de Carlan Y., Diano P., Perrin B., Cedat D. ODS-materials for high temperature applications in advanced nuclear systems. Nucl. Mater. Energy. 2016;9:22–28. doi: 10.1016/j.nme.2016.08.017. DOI
Ukai S., Ohtsuka S., Kaito T., de Carlan Y., Ribis J., Malaplate J. In: 10—Oxide Dispersion-Strengthened/Ferrite-Martensite Steels as Core Materials for Generation IV Nuclear Reactors. Yvon P., editor. Woodhead Publishing; Cambridge, UK: 2017.
Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI
Moravcik I., Gouvea L., Hornik V., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 2018;157:24–29. doi: 10.1016/j.scriptamat.2018.07.034. DOI
Moravcik I. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2017. Metal Matrix Composites Prepared by Powder Metallurgy Route.
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Shuman D.J., Costa A.L.M., Andrade M.S. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 2007;58:380–389. doi: 10.1016/j.matchar.2006.06.005. DOI
Battu A.K., Ramana C.V. Mechanical Properties of Nanocrystalline and Amorphous Gallium Oxide Thin Films. Adv. Eng. Mater. 2018;20:1701033. doi: 10.1002/adem.201701033. DOI
Battu A.K., Zade V.B., Deemer E., Ramana C.V. Microstructure-Mechanical Property Correlation in Size Controlled Nanocrystalline Molybdenum Films. Adv. Eng. Mater. 2018;20:1800496. doi: 10.1002/adem.201800496. DOI
Fu Z., Chen W., Xiao H., Zhou L., Zhu D., Yang S. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater. Des. 2013;44:535–539. doi: 10.1016/j.matdes.2012.08.048. DOI
Chen W., Fu Z., Fang S., Xiao H., Zhu D. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 2013;51:854–860. doi: 10.1016/j.matdes.2013.04.061. DOI
Shkodich N., Sedegov A., Kuskov K., Busurin S., Scheck Y., Vadchenko S., Moskovskikh D. Refractory High-Entropy HfTaTiNbZr-Based Alloys by Combined Use of Ball Milling and Spark Plasma Sintering: Effect of Milling Intensity. Metals. 2020;10:1268. doi: 10.3390/met10091268. DOI
Chen Z., Chen W., Wu B., Cao X., Liu L., Fu Z. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2015;648:217–224. doi: 10.1016/j.msea.2015.08.056. DOI
Gao M.C., Zhang B., Yang S., Guo S.M. Senary Refractory High-Entropy Alloy HfNbTaTiVZr. Metall. Mater. Trans. A. 2016;47:3333–3345. doi: 10.1007/s11661-015-3105-z. DOI
Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004. DOI
Yao H.W., Qiao J.W., Gao M.C., Hawk J.A., Ma S.G., Zhou H.F., Zhang Y. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng. A. 2016;674:203–211. doi: 10.1016/j.msea.2016.07.102. DOI
Fu Z., Chen W., Wen H., Chen Z., Lavernia E.J. Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 2015;646:175–182. doi: 10.1016/j.jallcom.2015.04.238. DOI
Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011;509:6043–6048. doi: 10.1016/j.jallcom.2011.02.171. DOI
Senkov O.N., Senkova S.V., Woodward C., Miracle D.B. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 2013;61:1545–1557. doi: 10.1016/j.actamat.2012.11.032. DOI
Kubicek A. Master’s Thesis. Brno University of Technology; Brno, Czech Republic: 2020. Vliv Podmínek Mechanického Legování na Kontaminaci Práškových Směsí a Bulk Materiálů.
Premkumar M., Prasad K.S., Singh A.K. Structure and stability of the B2 phase in Ti–25Al–25Zr alloy. Intermetallics. 2009;17:142–145. doi: 10.1016/j.intermet.2008.10.009. DOI
Senkov O.N., Couzinie J.-P., Rao S.I., Soni V., Banerjee R. Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia. 2020;9:100627. doi: 10.1016/j.mtla.2020.100627. DOI
Mackie A.J., Hatton G.D., Hamilton H.G.C., Dean J.S., Goodall R. Carbon uptake and distribution in Spark Plasma Sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z. Mater. Lett. 2016;171:14–17. doi: 10.1016/j.matlet.2016.02.049. DOI
Bar-Cohen Y. In: High Temperature Materials and Mechanisms. 1st ed. Bar-Cohen Y., editor. CRC Press; Boca Raton, FL, USA: 2014.
Guo Y., Li M., Li P., Chen C., Zhan Q., Chang Y., Zhang Y. Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys. J. Alloys Compd. 2020;820:153104. doi: 10.1016/j.jallcom.2019.153104. DOI
Moravcik I., Gamanov S., Moravcikova-Gouvea L., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Influence of Ti on the tensile properties of the high-strength powder metallurgy high entropy alloys. Materials. 2020;13:578. doi: 10.3390/ma13030578. PubMed DOI PMC
Rao K.R., Sinha S.K. Effect of sintering temperature on microstructural and mechanical properties of SPS processed CoCrCuFeNi based ODS high entropy alloy. Mater. Chem. Phys. 2020;256:123709. doi: 10.1016/j.matchemphys.2020.123709. DOI
Li M., Guo Y., Wang H., Shan J., Chang Y. Microstructures and mechanical properties of oxide dispersion strengthened CoCrFeNi high-entropy alloy produced by mechanical alloying and spark plasma sintering. Intermetallics. 2020;123:106819. doi: 10.1016/j.intermet.2020.106819. DOI
Suryanarayana C., Ivanov E., Boldyrev V.V. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304–306:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI
Briant C.L. In: Refractory Metals and Alloys. Buschow K.H.J., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S., Veyssière P.B.T.-E., editors. Elsevier; Oxford, UK: 2001. pp. 8088–8095.