Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-15217S
Grantová Agentura České Republiky
PubMed
33503970
PubMed Central
PMC7866169
DOI
10.3390/ma14030561
PII: ma14030561
Knihovny.cz E-zdroje
- Klíčová slova
- aluminothermy, deep-sea nodules, manganese alloy,
- Publikační typ
- časopisecké články MeSH
This paper brings an innovative processing route of manganese deep-sea nodules, which results in completely new grades of alloys. Deep-sea nodules were processed by aluminothermic method without the extraction of individual elements, producing complexly alloyed manganese-based "natural alloys". Three levels of the amount of aluminum were used for the aluminothermic reduction, and hence the alloys differ strongly in the amount of aluminum, which has a significant effect on their phase composition. The alloys have very high wear resistance, comparable with tool steel. The disadvantage of low-aluminum alloy is the susceptibility to local thermal cracking during friction, which occurs especially in the case of a dry sliding wear against the static partner with low thermal conductivity.
Czech Geological Survey Geologická 6 152 00 Prague 5 Czech Republic
Institute of Physics of the ASCR v v i Na Slovance 2 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Haynes B.W., Law S.L., Barron D.C., Kramer G.W., Maeda R., Magyar M.J. Bulletin/US Dept. of the Interior, Bureau of Mines. Volume 679. Government Printing Office; Washingtonm DC, USA: 1985. Pacific manganese nodules: Characterization and processing; pp. 1–43.
Hein J., Mizell K., Koschinsky A., Conrad T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based deposits. Ore Geol. Rev. 2013;51:1–14. doi: 10.1016/j.oregeorev.2012.12.001. DOI
Mohwinkel D., Kleint C., Koschinsky A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Appl. Geochem. 2014;43:13–21. doi: 10.1016/j.apgeochem.2014.01.010. DOI
Randhawa N.S., Hait J., Jana R.K. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy. 2016;165:166–181. doi: 10.1016/j.hydromet.2015.09.013. DOI
Sen P.K. Processing of sea nodules: Current status and future needs. Met. Mater. Process. 1999;11:85–100.
Sen P.K. Metals and materials from deep sea nodules: An outlook for the future. Int. Mater. Rev. 2010;55:364–391. doi: 10.1179/095066010X12777205875714. DOI
Cardwell P.H. Extractive metallurgy of ocean nodules. Min. Cong. J. 1973:38–43.
Hubred G.L. Manganese nodule extractive metallurgy. A review. Mar. Min. 1980;2:191–212.
Premchand , Jana R.K. Processing of polymetallic sea nodules: An overview; Proceedings of the Third ISOPE-Ocean Mining Symposium (OMS); Goa, India. 8–19 November 1999; pp. 237–245.
Vu H., Jandová J., Lisá K., Vranka F. Leaching of manganese deep ocean nodules in FeSO4–H2SO4–H2O solutions. Hydrometallurgy. 2005;77:147–153. doi: 10.1016/j.hydromet.2004.09.012. DOI
Vu H., Jandová J., Lisá K., Vranka F. Separation of copper and cobalt–nickel sulphide concentrates during processing of manganese deep ocean nodules. Hydrometallurgy. 2005;77:75–79.
Monhemius A.J. The extractive metallurgy of deep-sea manganese nodules. In: Burkin A.R., editor. Topics in Non-Ferrous Extractive Metallurgy—Critical Reports on Applied Chemistry Volume 1. Blackwell Scientific Publication; Oxford, UK: 1980. pp. 42–69.
Sridhar R., Jones W.E., Warner J.S. Extraction of copper, nickel and cobalt from sea nodules. J. Met. 1976;28:32–37. doi: 10.1007/BF03354284. DOI
Sommerfeld M., Friedmann D., Kuhn T., Friedrich B. “Zero-Waste”: A Sustainable Approach on Pyrometallurgical Processing of Manganese Nodule Slags. Minerals. 2018;8:544. doi: 10.3390/min8120544. DOI
Szabo L.J. Recovery of Metal Values from Manganese Deep Sea Nodules Using Ammoniacal Cuprous Leach Solutions. 3983017. U.S. Patent. 1976 Sep 28;
Agarwal J.C. A new fix on metal recovery from sea nodules. Eng. Min. J. 1976;177:74–78.
Skarbo R.R., Galin W.E., Natwig D.L. Cobalt Stripping from Oximes. 3867506. U.S. Patent. 1975 Feb 18;
Van Peteghem A.L. Extracting Metal Values from Manganiferrous Ocean Nodules. 4026773. U.S. Patent. 1977 May 31;
Kane W.S., Cardwell P.H. Process for Recovering Manganese from Its Ores. 3832165. U.S. Patent. 1974 Aug 27;
Cardwell P.H., Kane W.S. Method for Separating Metal Constituents from Ocean Floor Nodules. 3950486. U.S. Patent. 1976 Apr 13;
Acharya S., Das R.P. Kinetics and mechanism of reductive ammonia leaching of ocean nodules by manganese ion. Hydrometallurgy. 1987;19:169–186. doi: 10.1016/0304-386X(87)90003-X. DOI
Acharya R., Ghosh M.K., Anand S., Das R.P. Leaching of metals from Indian Ocean nodules in SO2–H2O–H2SO4–(NH4)2SO4 medium. Hydrometallurgy. 1999;53:169–175. doi: 10.1016/S0304-386X(99)00040-7. DOI
Nathsarma K.C., Rout P.C., Sarangi K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule. Hydrometallurgy. 2013;133:133–138. doi: 10.1016/j.hydromet.2012.12.009. DOI
Basu A.K. Proceedings of the National Seminar on Chemical and Allied Materials from the Ocean. Jadavpur University; Calcutta, India: 1989. Metallurgy of polymetallic sea nodules for recovery of value metals; pp. 1–8.
Srikanth S., Alex T.C., Agrawal A., Premchand Reduction roasting of deep-sea manganese nodules using liquid and gaseous reductants; Proceedings of the Second ISOPE-Ocean Mining Symposium (OMS); Seoul, Korea. 24–26 November 1997; pp. 177–184.
Jana R.K., Pandey B.D., Premchand Ammoniacal leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy. 1999;53:45–56. doi: 10.1016/S0304-386X(99)00031-6. DOI
Puvvada G.V.K., Jana R.K., Pandey B.D., Bagchi D., Kumar V., Premchand P. Ammoniacal leach and solvent extraction for the recovery of valuable metals from roast-reduced polymetallic Ocean nodules; Proceedings of the Second ISOPE-Ocean Mining Symposium (OMS); Seoul, Korea. 24–26 November 1997; pp. 185–189.
Hall F.W. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley Online Library; Hoboken, NJ, USA: 2000. Aluminothermic Processes.
Novák P., Vlášek J., Dvořák P., Školáková A., Nová K., Knaislová A. Microstructure of the Alloys Prepared by Reduction of Deep Sea Nodules by Aluminium and Silicon. Manuf. Technol. 2020;20:655–659.
Seetharaman S. Treatise on Process Metallurgy, Volume 3: Industrial Processes. Elsevier; Amsterdam, The Netherlands: 2014.
Shoemaker C.B., Shoemaker D.P., Hopkins T.E., Yindepit S. Refinement of the structure of [beta]-manganese and of a related phase in the Mn-Ni-Si system. Acta Cryst. 1978;34:3573–3576. doi: 10.1107/S0567740878011620. DOI
Coefficient of Friction Equation and Table Chart. [(accessed on 15 December 2020)]; Available online: https://www.engineersedge.com/coeffients_of_friction.htm.
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Massalski T.B. Binary Alloy Phase Diagrams. ASM, Materials Park; Novelty, OH, USA: 1990.
Atomic Radius of the Elements. [(accessed on 10 December 2020)]; Available online: https://periodictable.com/Properties/A/AtomicRadius.v.html.
Heat Treatment of Aluminum Alloys with the Natural Combination of Dopants
Possibilities of a Direct Synthesis of Aluminum Alloys with Elements from Deep-Sea Nodules
Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules