Heat Treatment of Aluminum Alloys with the Natural Combination of Dopants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-15217S
Czech Science Foundation
PubMed
36013678
PubMed Central
PMC9413273
DOI
10.3390/ma15165541
PII: ma15165541
Knihovny.cz E-zdroje
- Klíčová slova
- aluminum alloys, ferromanganese sea nodules, heat treatment,
- Publikační typ
- časopisecké články MeSH
Aluminothermic reduction without the separation of individual metals is currently considered as a possible method for processing ferromanganese sea nodules and creating new alloys. In this study, the product of their reduction-a manganese-based polymetallic mixture-was added to pure aluminum, as a mixture of alloying elements in their natural ratios. After extrusion, two new aluminum alloys with a total percentage of metallic additives ranging from 1 to 6 percent were prepared. The possibilities of the precipitation strengthening of these aluminum alloys, especially those containing Mn, Fe, Si, Ni, and Cu, were investigated under a wide range of heat treatment conditions. After each tested combination of annealing and artificial aging temperatures, the phase composition and the microstructure changes were recorded by X-ray diffraction, optical, and scanning electron microscopy with EDS analysis. Under none of the tested heat treatment conditions is a significant hardening effect observed, even though the precipitate phases are observed by TEM. However, the changes in the morphology of the present intermetallic phases caused by the heat treatment are revealed, which highlights the further possible development of these multicomponent alloys.
Zobrazit více v PubMed
Hein J.R., Mizell K., Koschinsky A., Conrad T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013;51:1–14. doi: 10.1016/j.oregeorev.2012.12.001. DOI
Reykhard L.Y., Shulga N.A. Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of mineralogy, geochemistry and genesis. Ore Geol. Rev. 2019;110:102933. doi: 10.1016/j.oregeorev.2019.102933. DOI
Haynes B.W., Law S.L., Barron D.C., Kramer G.W., Maeda Y., Magyar M.J. Pacific Manganese Nodules: Characterization and Processing. United States Government Printing Office; Washington, DC, USA: 1985. p. 48.
Blöthe M., Wegorzewski A., Müller C., Simon F., Kuhn T., Schippers A. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. Environ. Sci. Technol. 2015;49:7692–7700. doi: 10.1021/es504930v. PubMed DOI
Hein J.R., Conrad T.A., Dunham R.E. Seamount Characteristics and Mine-Site Model Applied to Exploration- and Mining-Lease-Block Selection for Cobalt-Rich Ferromanganese Crusts. Mar. Georesources Geotechnol. 2009;27:160–176. doi: 10.1080/10641190902852485. DOI
Senanayake G. Acid leaching of metals from deep-sea manganese nodules—A critical review of fundamentals and applications. Miner. Eng. 2011;24:1379–1396. doi: 10.1016/j.mineng.2011.06.003. DOI
Sommerfeld M., Friedmann D., Kuhn T., Friedrich B. “Zero-Waste”: A Sustainable Approach on Pyrometallurgical Processing of Manganese Nodule Slags. Minerals. 2018;8:544. doi: 10.3390/min8120544. DOI
Vu H., Jandová J., Lisá K., Vranka F. Leaching of manganese deep ocean nodules in FeSO4–H2SO4–H2O solutions. Hydrometallurgy. 2005;77:147–153. doi: 10.1016/j.hydromet.2004.09.012. DOI
Jandová J., Lisá K., Vu H., Vranka F. Separation of copper and cobalt–nickel sulphide concentrates during processing of manganese deep ocean nodules. Hydrometallurgy. 2005;77:75–79. doi: 10.1016/j.hydromet.2004.10.011. DOI
Novák P., Vu N.H., Šulcová L., Kopeček J., Laufek F., Tsepeleva A., Dvořák P., Michalcová A. Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials. 2021;14:561. doi: 10.3390/ma14030561. PubMed DOI PMC
Lyons A. Materials for Architects and Builders. 6th ed. Routledge; London, UK: 2019.
Totten G.E., MacKenzie D.S., editors. Handbook of Aluminum: Alloy Production and Materials Manufacturing. 1st ed. CRC Press; Boca Raton, FL, USA: 2003.
Lumley R., editor. Fundamentals of Aluminium Metallurgy: Recent Advances. 1st ed. Woodhead Publishing; Cambridge, MA, USA: 2018.
Čapek J., Kubásek J., Pinc J., Drahokoupil J., Čavojský M., Vojtěch D. Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy—The influence of extrusion parameters on microstructure and mechanical characteristics. J. Mech. Behav. Biomed. Mater. 2020;108:103796. doi: 10.1016/j.jmbbm.2020.103796. PubMed DOI
Mehl R.F. In: Atlas of Microstructures of Industrial Alloys, Metals Handbook. 8th ed. Lyman T., editor. American Society for Metals; Metals Park, OH, USA: 1972. pp. 241–273.
Strobel K., Sweet E., Easton M., Nie J., Couper M. Dispersoid Phases in 6xxx Series Aluminium Alloys; Proceedings of the 7th Pacific Rim International Conference on Advanced Materials and Processing; Cairns, Australia. 2–6 August 2010; pp. 926–929.
Donnadieu P., Lapasset G., Sanders T.H. Manganese-induced ordering in the α-(Al-Mn-Fe-Si) approximant phase. Philos. Mag. Lett. 1994;70:319–326. doi: 10.1080/09500839408240993. DOI
Yoo J.E., Shan A., Moon I.G., Maeng S.J. A study on composition and crystal structure of dispersoids in AlMgSi alloys. J. Mater. Sci. 1999;34:2679–2683. doi: 10.1023/A:1004673321013. DOI
Li Y., Muggerud A.M.F., Olsen A., Furu T. Precipitation of Partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 2012;60:1004–1014. doi: 10.1016/j.actamat.2011.11.003. DOI
Li Y.J., Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 2003;51:3415–3428. doi: 10.1016/S1359-6454(03)00160-5. DOI
Zhang Y., Jin W., Hao X., Qiu F., Zhao Q. Improving Elevated-Temperature Strength of an Al–Mn–Si Alloy by Strain-Induced Precipitation. Metals. 2018;8:446. doi: 10.3390/met8060446. DOI
Lobanov M., Zorina M. Metody Opredeleniya Koeffitsiyentov Diffuzii. Izdatel’stvo Ural’skogo Universiteta; Yekaterinburg, Russia: 2017.
Kakurin Y., Kakurina N., Zakharov A. Metodika opredeleniya koeffitsiyenta zernogranichnoy diffuzii primesi v metallakh na osnove chislennogo resheniya po modeli Fishera. Inž. vestn. Dona. 2013;26:95.
Dolgopolov N.A. Ph.D. Dissertation. NUST MISiS; Moscow, Russia: 2014. Zernogranichnaya Diffuziya Medi v Alyuminii i v Splavakh Alyuminiy–Med’ i Alyuminiy–Tseriy.
Czerwinski F. Thermal Stability of Aluminum Alloys. Materials. 2020;13:3441. doi: 10.3390/ma13153441. PubMed DOI PMC
de Campos M.F. Diffusion Coefficients of Interest for the Simulation of Heat Treatment in Rare-Earth Transition Metal Magnets. Mater. Sci. Forum. 2012;727–728:163–168. doi: 10.4028/www.scientific.net/MSF.727-728.163. DOI