Possibilities of a Direct Synthesis of Aluminum Alloys with Elements from Deep-Sea Nodules
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-15217S
Czech Science Foundation
PubMed
35806593
PubMed Central
PMC9267210
DOI
10.3390/ma15134467
PII: ma15134467
Knihovny.cz E-resources
- Keywords
- aluminothermy, deep-sea nodules, manganese-aluminum alloy,
- Publication type
- Journal Article MeSH
This work investigated the possibility of the direct preparation of aluminum alloys by aluminothermic reduction of deep-sea nodules with a high excess of aluminum. The process was found to be unable to obtain aluminum alloy, but an aluminum-rich manganese-based alloy was obtained instead, being composed of intermetallics. The alloy was characterized in the as-reduced state, as well as after crushing and sintering in the temperature range of 800-950 °C. The sample sintered at 900 °C was also heat-treated by annealing at 800 °C for 3 h and rapidly cooled. It was observed that with the increasing sintering temperature, the original matrix phase Al11Mn14 was transformed into a duplex matrix with a structure corresponding to Al11Mn14 and Al4Cu9, and this mixture was further transformed to the matrix with the structure corresponding to Al4Cu9. Furthermore, the mechanical properties and wear resistance of the samples were described. The highest microhardness was reached in the sample, which was annealed after sintering. Sintered samples reached a lower wear rate because of the fragmentation of brittle intermetallics during crushing.
See more in PubMed
Cronan D.S. Chapter 2 Deep-Sea Nodules: Distribution and Geochemistry. Mar. Manganese Depos. 1977;15:11–44.
Kim S., Cho S.-G., Lim W., Lee T.H., Park S., Hong S., Kim H.-W., Min C.-H., Choi J.-S., Ko Y.-T., et al. Probability distribution for size and mass of a nodule in the KR5 area for the development of a manganese nodule miner: Distribution and Geochemistry. Ocean Eng. 2019;171:131–138. doi: 10.1016/j.oceaneng.2018.10.041. DOI
Turner P.J. Encyclopedia of Ocean Sciences. Elsevier; Amsterdam, The Netherlands: 2019. Deep-Sea Mining and Environmental Management; pp. 507–515.
Cronan D.S., Tooms J.S. The geochemistry of manganese nodules and associated pelagic deposits from the Pacific and Indian Oceans. Deep. Sea Res. Oceanogr. Abstr. 1969;16:335–359. doi: 10.1016/0011-7471(69)90003-5. DOI
Hesse R., Schacht U. Early Diagenesis of Deep-Sea Sediments. Deep.-Sea Sediments. 2011;63:557–713.
Kuhn T., Uhlenkott K., Vink A., Rühlemann C., Martinez Arbizu P. Seafloor Geomorphology as Benthic Habitat. Elsevier; Amsterdam, The Netherlands: 2020. Manganese nodule fields from the Northeast Pacific as benthic habitats; pp. 933–947.
Wang M., Wu Z., Best J., Yang F., Li X., Zhao D., Zhou J. Using multibeam backscatter strength to analyze the distribution of manganese nodules: A case study of seamounts in the Western Pacific Ocean. Appl. Acoust. 2021;173:107729. doi: 10.1016/j.apacoust.2020.107729. DOI
Wellbeloved D.B., Craven P.M., Waudby J.W. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; Hoboken, NJ, USA: 2000. Manganese and Manganese Alloys.
Sen P.K. Metals and materials from deep sea nodules: An outlook for the future. Int. Mater. Rev. 2013;55:364–391. doi: 10.1179/095066010X12777205875714. DOI
Hai J., Liu L., Tan W., Hao R., Qiu G. Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions. Hazard. Mater. 2020;390:122166. doi: 10.1016/j.jhazmat.2020.122166. PubMed DOI
Vereshchagin O.S., Perova E.N., Brusnitsyn A.I., Ershova V.B., Khudoley A.K., Shilovskikh V.V., Molchanov E.V. Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geol. Rev. 2019;106:192–204. doi: 10.1016/j.oregeorev.2019.01.023. DOI
Knaack D.R., Leybourne M.I., Layton-Matthews D., McDonald A.M., Vuletich A., Chipleym D., Silva L.G., Pufahl P.K. Manganese nodules NOD-A-1 and NOD-P-1: Implications of pre-treatment on oxygen isotopes and mineralogy. Chem. Geol. 2020;558:119924. doi: 10.1016/j.chemgeo.2020.119924. DOI
Randhawa N.S., Hait J., Jana R.K. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy. 2016;165:166–181. doi: 10.1016/j.hydromet.2015.09.013. DOI
Alafara A.B., Ibrahim L., Adekola F.A., Bale R.B., Ghosh M.K., Sheik A.R., Pradhan S.R., Ayanda O.S., Folorunsho I.O. Hydrometallurgical Processing of Manganese Ores: A Review. J. Miner. Mater. Charact. Eng. 2014;2:230–247.
Mishra D., Srivastava R.R., Sahu K.K., Singh T.B., Jana R.K. Leaching of roast-reduced manganese nodules in NH3–(NH4)2CO3 medium. Hydrometallurgy. 2011;109:215–220. doi: 10.1016/j.hydromet.2011.07.006. DOI
Michalcová A., Orlíček M., Novák P. Aluminum Alloys with the Addition of Reduced Deep-Sea Nodules. Metals. 2021;11:421. doi: 10.3390/met11030421. DOI
Abramovski T., Stefanova V.P., Causse R., Romanchuk A. Technologies for the processing of polymetallic nodules from Clarion Clipperton zone in the Pacific ocean. J. Chem. Technol. Metall. 2017;52:258–269.
Mukherjee P., Pattnaik S., Sanjay K., Mohapatra M. Manganese enrichment of polymetallic oceanic nodules via selective leaching process for energy storage applications. J. Chem. Technol. Biotechnol. 2021;96:1246–1257. doi: 10.1002/jctb.6637. DOI
Torres D., Ayala L., Saldaña M., Cánovas M., Jeldres R.I., Nieto S., Castillo J., Robles P., Toro N. Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents. Metals. 2019;9:1316. doi: 10.3390/met9121316. DOI
Jandová J., Vu N.H., Dvořák P. Metody Výroby Neželezných Kovů a Zpracování Odpadů. Vysoká Škola Chemicko-Technologická v Praze; Prague, Czech Republic: 2018.
Torres J.T., Valdés A.F., Almanza Robles J.M. Elaboration of Al-Mn Alloys by Aluminothermic Reduction of Mn2O3. Mater. Today Proc. 2015;2:4963–4970. doi: 10.1016/j.matpr.2015.10.073. DOI
Novák P., Vu N.H., Šulcová L., Kopeček J., Laufek F., Tsepeleva A., Dvořák P., Michalcová A. Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials. 2021;14:561. doi: 10.3390/ma14030561. PubMed DOI PMC
Dávila O.F., Torres J.T., Valdés A.F. Effect of Mg Concentration on the Aluminothermic Reduction of Mn2O3 Particles Obtained from Cathodes of Discharged Alkaline Batteries: Mathematical Modeling and Experimental Results. Metals. 2019;9:49. doi: 10.3390/met9010049. DOI
Hall F.W. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; Hoboken, NJ, USA: 2000. Aluminothermic Processes.
Novák P., Vlášek J., Dvořák P., Školáková A., Nová K., Knaislová A. Microstructure of the alloys prepared by reduction of deep sea nodules by aluminium and silicon. Manuf. Technol. 2020;20:655–659. doi: 10.21062/mft.2020.086. DOI
Matilainen A., Pussi K., Diehl R.D., Hahne M., Gille P., Gaudry É., Serkovic Loli L.N., McGuirk G.M., de Weerd M.-C., Fournée V., et al. Structure of the monoclinic Al13Fe4(010) complex metallic alloy surface determined by low-energy electron diffraction. Phys. Rev. B. 2015;92:014109. doi: 10.1103/PhysRevB.92.014109. DOI
Msallamová Š., Novák P., Miossec P., Kopeček J., Tsepeleva A., Rudomilova D., Fojt J. Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials. 2021;14:5211. doi: 10.3390/ma14185211. PubMed DOI PMC
Massalski T.B. Binary Alloy Phase Diagrams. ASM, Materials Park; Novelty, OH, USA: 1990.