• This record comes from PubMed

Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering

. 2019 Dec 06 ; 12 (24) : . [epub] 20191206

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/17_048/0007350 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000778 European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000485 European Regional Development Fund
21-SVV/2019 Ministry of Education, Youth and Sports

Ni-Ti alloys are considered to be very important shape memory alloys with a wide application area including, e.g., biomaterials, actuators, couplings, and components in automotive, aerospace, and robotics industries. In this study, the NiTi46 (wt.%) alloy was prepared by a combination of self-propagating high-temperature synthesis, milling, and spark plasma sintering consolidation at three various temperatures. The compacted samples were subsequently heat-treated at temperatures between 400 °C and 900 °C with the following quenching in water or slow cooling in a closed furnace. The influence of the consolidation temperature and regime of heat treatment on the microstructure, mechanical properties, and temperatures of phase transformation was evaluated. The results demonstrate the brittle behaviour of the samples directly after spark plasma sintering at all temperatures by the compressive test and no transformation temperatures at differential scanning calorimetry curves. The biggest improvement of mechanical properties, which was mainly a ductility enhancement, was achieved by heat treatment at 700 °C. Slow cooling has to be recommended in order to obtain the shape memory properties.

See more in PubMed

Van Humbeeck J. Shape Memory Alloys: A Material and a Technology. Adv. Eng. Mater. 2001;3:837–850. doi: 10.1002/1527-2648(200111)3:11<837::AID-ADEM837>3.0.CO;2-0. DOI

Khalil-Allafi J., Dlouhy A., Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 2002;50:4255–4274. doi: 10.1016/S1359-6454(02)00257-4. DOI

Tang W., Sundman B., Sandström R., Qiu C. New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater. 1999;47:3457–3468. doi: 10.1016/S1359-6454(99)00193-7. DOI

Nayan N., Saikrishna C.N., Ramaiah K.V., Bhaumik S.K., Nair K.S., Mittal M.C. Vacuum induction melting of NiTi shape memory alloys in graphite crucible. Mater. Sci. Eng. A. 2007;465:44–48. doi: 10.1016/j.msea.2007.04.039. DOI

Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Mater. 2005;53:3971–3985. doi: 10.1016/j.actamat.2005.05.004. DOI

Chuvildeev V.N., Panov D.V., Boldin M.S., Nokhrin A.V., Blagoveshchensky Y.V., Sakharov N.V., Shotin S.V., Kotkov D.N. Structure and properties of advanced materials obtained by Spark Plasma Sintering. Acta Astronaut. 2015;109:172–176. doi: 10.1016/j.actaastro.2014.11.008. DOI

Velmurugan C., Senthilkumar V., Biswas K., Yadav S. Densification and microstructural evolution of spark plasma sintered NiTi shape memory alloy. Adv. Powder Technol. 2018;29:2456–2462. doi: 10.1016/j.apt.2018.06.026. DOI

Průša F., Šesták J., Školáková A., Novák P., Haušild P., Karlík M., Minárik P., Kopeček J., Laufek F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2019;761:138020. doi: 10.1016/j.msea.2019.06.030. DOI

Novák P., Vanka T., Nová K., Stoulil J., Pruša F., Kopeček J., Haušild P., Laufek F. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC

Prusa F., Vojtech D., Kucera V., Bernatikova A. Preparation of Ultrafine-Grained and Nano-crystalline Materials by Mechanical Alloying and Spark Plasma Sintering. Chem. Listy. 2017;111:314–321.

Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al–Cu–Fe quasicrystals using mechanical alloying and Spark Plasma Sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI

Marek I., Vojtěch D., Michalcová A., Kubatík T.F. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng. A. 2015;627:326–332. doi: 10.1016/j.msea.2015.01.014. DOI

Novák P., Mejzlíková L., Michalcová A., Čapek J., Beran P., Vojtěch D. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics. 2013;42:85–91. doi: 10.1016/j.intermet.2013.05.015. DOI

Novák P., Školáková A., Pignol D., Průša F., Salvetr P., Kubatík T.F., Perriere L., Karlík M. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater. Chem. Phys. 2016;181:295–300. doi: 10.1016/j.matchemphys.2016.06.062. DOI

Zhang L., Zhang Y.Q., Jiang Y.H., Zhou R. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J. Alloys Compd. 2015;644:513–522. doi: 10.1016/j.jallcom.2015.05.063. DOI

Zhao Y., Taya M., Kang Y., Kawasaki A. Compression behavior of porous NiTi shape memory alloy. Acta Mater. 2005;53:337–343. doi: 10.1016/j.actamat.2004.09.029. DOI

Adharapurapu R.R., Jiang F., Vecchio K.S. Aging effects on hardness and dynamic compressive behavior of Ti–55Ni (at.%) alloy. Mater. Sci. Eng. A. 2010;527:1665–1676. doi: 10.1016/j.msea.2009.10.069. DOI

Khamei A.A., Dehghani K. A study on the mechanical behavior and microstructural evolution of Ni60wt.%–Ti40wt.% (60Nitinol) intermetallic compound during hot deformation. Mater. Chem. Phys. 2010;123:269–277. doi: 10.1016/j.matchemphys.2010.04.010. DOI

Safdel A., Zarei-Hanzaki A., Shamsolhodaei A., Krooß P., Niendorf T. Room temperature superelastic responses of NiTi alloy treated by two distinct thermomechanical processing schemes. Mater. Sci. Eng. A. 2017;684:303–311. doi: 10.1016/j.msea.2016.12.047. DOI

Sun B., Fu M.W., Lin J., Ning Y.Q. Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 2017;131:49–59. doi: 10.1016/j.matdes.2017.05.094. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Karaca H.E., Kaya I., Tobe H., Basaran B., Nagasako M., Kainuma R., Chumlyakov Y. Shape memory behavior of high strength Ni54Ti46 alloys. Mater. Sci. Eng. A. 2013;580:66–70. doi: 10.1016/j.msea.2013.04.102. DOI

Khoo Z.X., An J., Chua C.K., Shen Y.F., Kuo C.N., Liu Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials. 2019;12:77. doi: 10.3390/ma12010077. PubMed DOI PMC

Saedi S., Turabi A.S., Taheri Andani M., Haberland C., Karaca H., Elahinia M. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J. Alloys Compd. 2016;677:204–210. doi: 10.1016/j.jallcom.2016.03.161. DOI

Otsuka K., Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005;50:511–678. doi: 10.1016/j.pmatsci.2004.10.001. DOI

Chen H., Zheng L.J., Zhang F.X., Zhang H. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. Mater. Sci. Eng. A. 2017;708:514–522. doi: 10.1016/j.msea.2017.10.016. DOI

Nishida M., Wayman C.M., Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A. 1986;17:1505–1515. doi: 10.1007/BF02650086. DOI

Salvetr P., Novák P., Moravec H. Ni-Ti alloys produced by powder metallurgy. Manuf. Technol. 2015;15:689–694.

Salvetr P., Kubatík T.F., Pignol D., Novák P. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique. Metall. Mater. Trans. B. 2017;48:772–778. doi: 10.1007/s11663-016-0894-4. DOI

Stroz D., Kwarciak J., Morawiec H. Effect of ageing on martensitic transformation in NiTi shape memory alloy. J. Mater. Sci. 1988;23:4127–4131. doi: 10.1007/BF01106847. DOI

Sadrnezhaad S.K., Mirabolghasemi S.H. Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy. Mater. Des. 2007;28:1945–1948. doi: 10.1016/j.matdes.2006.04.026. DOI

Xu Y., Shimizu S., Suzuki Y., Otsuka K., Ueki T., Mitose K. Recovery and recrystallization processes in Ti-Pd-Ni high-temperature shape memory alloys. Acta Mater. 1997;45:1503–1511. doi: 10.1016/S1359-6454(96)00267-4. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...