Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_048/0007350
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000778
European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000485
European Regional Development Fund
21-SVV/2019
Ministry of Education, Youth and Sports
PubMed
31817662
PubMed Central
PMC6947301
DOI
10.3390/ma12244075
PII: ma12244075
Knihovny.cz E-resources
- Keywords
- Ni-Ti alloy, aging, compressive test, hardness, self-propagating high-temperature synthesis, shape memory, spark plasma sintering,
- Publication type
- Journal Article MeSH
Ni-Ti alloys are considered to be very important shape memory alloys with a wide application area including, e.g., biomaterials, actuators, couplings, and components in automotive, aerospace, and robotics industries. In this study, the NiTi46 (wt.%) alloy was prepared by a combination of self-propagating high-temperature synthesis, milling, and spark plasma sintering consolidation at three various temperatures. The compacted samples were subsequently heat-treated at temperatures between 400 °C and 900 °C with the following quenching in water or slow cooling in a closed furnace. The influence of the consolidation temperature and regime of heat treatment on the microstructure, mechanical properties, and temperatures of phase transformation was evaluated. The results demonstrate the brittle behaviour of the samples directly after spark plasma sintering at all temperatures by the compressive test and no transformation temperatures at differential scanning calorimetry curves. The biggest improvement of mechanical properties, which was mainly a ductility enhancement, was achieved by heat treatment at 700 °C. Slow cooling has to be recommended in order to obtain the shape memory properties.
See more in PubMed
Van Humbeeck J. Shape Memory Alloys: A Material and a Technology. Adv. Eng. Mater. 2001;3:837–850. doi: 10.1002/1527-2648(200111)3:11<837::AID-ADEM837>3.0.CO;2-0. DOI
Khalil-Allafi J., Dlouhy A., Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 2002;50:4255–4274. doi: 10.1016/S1359-6454(02)00257-4. DOI
Tang W., Sundman B., Sandström R., Qiu C. New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta Mater. 1999;47:3457–3468. doi: 10.1016/S1359-6454(99)00193-7. DOI
Nayan N., Saikrishna C.N., Ramaiah K.V., Bhaumik S.K., Nair K.S., Mittal M.C. Vacuum induction melting of NiTi shape memory alloys in graphite crucible. Mater. Sci. Eng. A. 2007;465:44–48. doi: 10.1016/j.msea.2007.04.039. DOI
Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Mater. 2005;53:3971–3985. doi: 10.1016/j.actamat.2005.05.004. DOI
Chuvildeev V.N., Panov D.V., Boldin M.S., Nokhrin A.V., Blagoveshchensky Y.V., Sakharov N.V., Shotin S.V., Kotkov D.N. Structure and properties of advanced materials obtained by Spark Plasma Sintering. Acta Astronaut. 2015;109:172–176. doi: 10.1016/j.actaastro.2014.11.008. DOI
Velmurugan C., Senthilkumar V., Biswas K., Yadav S. Densification and microstructural evolution of spark plasma sintered NiTi shape memory alloy. Adv. Powder Technol. 2018;29:2456–2462. doi: 10.1016/j.apt.2018.06.026. DOI
Průša F., Šesták J., Školáková A., Novák P., Haušild P., Karlík M., Minárik P., Kopeček J., Laufek F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2019;761:138020. doi: 10.1016/j.msea.2019.06.030. DOI
Novák P., Vanka T., Nová K., Stoulil J., Pruša F., Kopeček J., Haušild P., Laufek F. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Prusa F., Vojtech D., Kucera V., Bernatikova A. Preparation of Ultrafine-Grained and Nano-crystalline Materials by Mechanical Alloying and Spark Plasma Sintering. Chem. Listy. 2017;111:314–321.
Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al–Cu–Fe quasicrystals using mechanical alloying and Spark Plasma Sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI
Marek I., Vojtěch D., Michalcová A., Kubatík T.F. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng. A. 2015;627:326–332. doi: 10.1016/j.msea.2015.01.014. DOI
Novák P., Mejzlíková L., Michalcová A., Čapek J., Beran P., Vojtěch D. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics. 2013;42:85–91. doi: 10.1016/j.intermet.2013.05.015. DOI
Novák P., Školáková A., Pignol D., Průša F., Salvetr P., Kubatík T.F., Perriere L., Karlík M. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater. Chem. Phys. 2016;181:295–300. doi: 10.1016/j.matchemphys.2016.06.062. DOI
Zhang L., Zhang Y.Q., Jiang Y.H., Zhou R. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J. Alloys Compd. 2015;644:513–522. doi: 10.1016/j.jallcom.2015.05.063. DOI
Zhao Y., Taya M., Kang Y., Kawasaki A. Compression behavior of porous NiTi shape memory alloy. Acta Mater. 2005;53:337–343. doi: 10.1016/j.actamat.2004.09.029. DOI
Adharapurapu R.R., Jiang F., Vecchio K.S. Aging effects on hardness and dynamic compressive behavior of Ti–55Ni (at.%) alloy. Mater. Sci. Eng. A. 2010;527:1665–1676. doi: 10.1016/j.msea.2009.10.069. DOI
Khamei A.A., Dehghani K. A study on the mechanical behavior and microstructural evolution of Ni60wt.%–Ti40wt.% (60Nitinol) intermetallic compound during hot deformation. Mater. Chem. Phys. 2010;123:269–277. doi: 10.1016/j.matchemphys.2010.04.010. DOI
Safdel A., Zarei-Hanzaki A., Shamsolhodaei A., Krooß P., Niendorf T. Room temperature superelastic responses of NiTi alloy treated by two distinct thermomechanical processing schemes. Mater. Sci. Eng. A. 2017;684:303–311. doi: 10.1016/j.msea.2016.12.047. DOI
Sun B., Fu M.W., Lin J., Ning Y.Q. Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 2017;131:49–59. doi: 10.1016/j.matdes.2017.05.094. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Karaca H.E., Kaya I., Tobe H., Basaran B., Nagasako M., Kainuma R., Chumlyakov Y. Shape memory behavior of high strength Ni54Ti46 alloys. Mater. Sci. Eng. A. 2013;580:66–70. doi: 10.1016/j.msea.2013.04.102. DOI
Khoo Z.X., An J., Chua C.K., Shen Y.F., Kuo C.N., Liu Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials. 2019;12:77. doi: 10.3390/ma12010077. PubMed DOI PMC
Saedi S., Turabi A.S., Taheri Andani M., Haberland C., Karaca H., Elahinia M. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J. Alloys Compd. 2016;677:204–210. doi: 10.1016/j.jallcom.2016.03.161. DOI
Otsuka K., Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005;50:511–678. doi: 10.1016/j.pmatsci.2004.10.001. DOI
Chen H., Zheng L.J., Zhang F.X., Zhang H. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. Mater. Sci. Eng. A. 2017;708:514–522. doi: 10.1016/j.msea.2017.10.016. DOI
Nishida M., Wayman C.M., Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A. 1986;17:1505–1515. doi: 10.1007/BF02650086. DOI
Salvetr P., Novák P., Moravec H. Ni-Ti alloys produced by powder metallurgy. Manuf. Technol. 2015;15:689–694.
Salvetr P., Kubatík T.F., Pignol D., Novák P. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique. Metall. Mater. Trans. B. 2017;48:772–778. doi: 10.1007/s11663-016-0894-4. DOI
Stroz D., Kwarciak J., Morawiec H. Effect of ageing on martensitic transformation in NiTi shape memory alloy. J. Mater. Sci. 1988;23:4127–4131. doi: 10.1007/BF01106847. DOI
Sadrnezhaad S.K., Mirabolghasemi S.H. Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy. Mater. Des. 2007;28:1945–1948. doi: 10.1016/j.matdes.2006.04.026. DOI
Xu Y., Shimizu S., Suzuki Y., Otsuka K., Ueki T., Mitose K. Recovery and recrystallization processes in Ti-Pd-Ni high-temperature shape memory alloys. Acta Mater. 1997;45:1503–1511. doi: 10.1016/S1359-6454(96)00267-4. DOI
Advanced Powder Metallurgy Technologies