Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent

. 2020 Dec 09 ; 13 (24) : . [epub] 20201209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33316967

Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young's modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young's modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young's modulus close to the human bone.

Zobrazit více v PubMed

Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K.J. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010;95:53–61. doi: 10.1002/jbm.b.31682. PubMed DOI

Li J.P., Li S.H., Van Blitterswijk C.A., de Groot K. A novel porous Ti6Al4V: Characterization and cell attachment. J. Biomed. Mater. Res. Part A. 2005;73:223–233. doi: 10.1002/jbm.a.30278. PubMed DOI

Ryan G., Pandit A., Apatsidis D.P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–2670. doi: 10.1016/j.biomaterials.2005.12.002. PubMed DOI

Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Lee H., Jang T.-S., Song J., Kim H.-E., Jung H.-D. Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Mater. Lett. 2016;185:21–24. doi: 10.1016/j.matlet.2016.08.075. DOI

Prymak O., Bogdanski D., Köller M., Esenwein S.A., Muhr G., Beckmann F., Donath T., Assad M., Epple M. Morphological characterization and in vitro biocompatibility of a porous nickel–titanium alloy. Biomaterials. 2005;26:5801–5807. doi: 10.1016/j.biomaterials.2005.02.029. PubMed DOI

Školáková A., Novák P., Salvetr P., Moravec H., Šefl V., Deduytsche D., Detavernier C. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis. Metall. Mater. Trans. A. 2017;48:3559–3569. doi: 10.1007/s11661-017-4105-y. DOI

Salvetr P., Školáková A., Novák P., Vavřík J. Effect of Si Addition on Martensitic Transformation and Microstructure of NiTiSi Shape Memory Alloys. Metall. Mater. Trans. A. 2020;51:4434–4438. doi: 10.1007/s11661-020-05883-1. DOI

Salvetr P., Dlouhý J., Školáková A., Průša F., Novák P., Karlík M., Haušild P. Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering. Materials. 2019;12:4075. doi: 10.3390/ma12244075. PubMed DOI PMC

Bednarczyk W., Kawałko J., Wątroba M., Gao N., Starink M.J., Bała P., Langdon T.G. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Mater. Sci. Eng. A. 2020;776:139047. doi: 10.1016/j.msea.2020.139047. DOI

Ren F., Zhu W., Chu K. Fabrication and evaluation of bulk nanostructured cobalt intended for dental and orthopedic implants. J. Mech. Behav. Biomed. Mater. 2017;68:115–123. doi: 10.1016/j.jmbbm.2017.01.039. PubMed DOI

Yazdimamaghani M., Razavi M., Vashaee D., Moharamzadeh K., Boccaccini A.R., Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater. Sci. Eng. C. 2017;71:1253–1266. doi: 10.1016/j.msec.2016.11.027. PubMed DOI

Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Jt. Surgery. Br. Vol. 1999;81:907–914. doi: 10.1302/0301-620X.81B5.0810907. PubMed DOI

Levine B.R., Sporer S., Poggie R.A., Della Valle C.J., Jacobs J.J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27:4671–4681. doi: 10.1016/j.biomaterials.2006.04.041. PubMed DOI

Čapek J., Machová M., Fousová M., Kubásek J., Vojtěch D., Fojt J., Jablonská E., Lipov J., Ruml T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C. 2016;69:631–639. doi: 10.1016/j.msec.2016.07.027. PubMed DOI

Abdel-Hady Gepreel M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013;20:407–415. doi: 10.1016/j.jmbbm.2012.11.014. PubMed DOI

Khodaei M., Valanezhad A., Watanabe I., Yousefi R. Surface and mechanical properties of modified porous titanium scaffold. Surf. Coat. Technol. 2017;315:61–66. doi: 10.1016/j.surfcoat.2017.02.032. DOI

Gu Y.W., Yong M.S., Tay B.Y., Lim C.S. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C. 2009;29:1515–1520. doi: 10.1016/j.msec.2008.11.003. DOI

Rao S., Ushida T., Tateishi T., Okazaki Y., Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio Med. Mater. Eng. 1996;6:79–86. doi: 10.3233/BME-1996-6202. PubMed DOI

Assad M., Chernyshov A.V., Jarzem P., Leroux M.A., Coillard C., Charette S., Rivard C.H. Porous titanium-nickel for intervertebral fusion in a sheep model: Part 2. Surface analysis and nickel release assessment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003;64:121–129. doi: 10.1002/jbm.b.10531. PubMed DOI

Hsu H.-C., Wu S.-C., Hsu S.-K., Li Y.-C., Ho W.-F. Structure and mechanical properties of as-cast Ti-Si alloys. Intermetallics. 2014;47:11–16. doi: 10.1016/j.intermet.2013.12.004. DOI

Knaislová A., Novák P. Preparation of Porous Biomaterial Based on Ti-Si Alloys. Manuf. Technol. 2018;18:411–417. doi: 10.21062/ujep/114.2018/a/1213-2489/MT/18/3/411. DOI

Arifvianto B., Leeflang M.A., Zhou J. The compression behaviors of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds with the space holder method. Powder Technol. 2015;284:112–121. doi: 10.1016/j.powtec.2015.06.033. DOI

Daudt N.d.F., Bram M., Barbosa A.P.C., Laptev A.M., Alves C. Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment. J. Mater. Process. Technol. 2017;239:202–209. doi: 10.1016/j.jmatprotec.2016.08.022. DOI

Müller L., Müller F.A. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–189. doi: 10.1016/j.actbio.2005.11.001. PubMed DOI

ISO . International Organization for Standardization. ISO; Geneva, Switzerland: 2009. 10993–5: 2009 Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity.

Thümmler F., Oberacker R. An introduction to Powder Metallurgy. Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining; London, UK: 1993.

Pabst W., Gregorová E., Uhlířová T. Microstructure characterization via stereological relations—A shortcut for beginners. Mater. Charact. 2015;105:1–12. doi: 10.1016/j.matchar.2015.04.013. DOI

Massalski T.B. Binary alloy phase diagrams. ASM Int. 1992;3:2874.

Novák P., Kubásek J., Šerák J., Vojtěch D., Michalcová A. Mechanism and kinetics of the intermediary phase formation in Ti–Al and Ti–Al–Si systems during reactive sintering. Int. J. Mater. Res. 2009;100:353–355. doi: 10.3139/146.110028. DOI

Trambukis J., Munir Z.A. Effect of Particle Dispersion on the Mechanism of Combustion Synthesis of Titanium Silicide. J. Am. Ceram. Soc. 1990;73:1240–1245. doi: 10.1111/j.1151-2916.1990.tb05186.x. DOI

Riley D.P. Synthesis and characterization of SHS bonded Ti5Si3 on Ti substrates. Intermetallics. 2006;14:770–775. doi: 10.1016/j.intermet.2005.11.009. DOI

Riley D.P., Oliver C.P., Kisi E.H. In-situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS) Intermetallics. 2006;14:33–38. doi: 10.1016/j.intermet.2005.04.004. DOI

Tang H.P., Wang J., Qian M. 28-Porous titanium structures and applications. In: Qian M., Froes F.H., editors. Titanium Powder Metallurgy. Butterworth-Heinemann; Boston, MA, USA: 2015. pp. 533–554. DOI

Fatemi A. Ullmann’s Encyclopedia of Industrial Chemistry. The Charleston Company; Denver, CO, USA: 2000. Mechanical Properties and Testing of Metallic Materials. DOI

Yaszemski M.J., Payne R.G., Hayes W.C., Langer R., Mikos A.G. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17:175–185. doi: 10.1016/0142-9612(96)85762-0. PubMed DOI

Oh I.-H., Nomura N., Masahashi N., Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 2003;49:1197–1202. doi: 10.1016/j.scriptamat.2003.08.018. DOI

Ding W., Wang Z., Chen G., Cai W., Zhang C., Tao Q., Qu X., Qin M. Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization. Corros. Sci. 2021;178:109080. doi: 10.1016/j.corsci.2020.109080. DOI

Tao Q., Wang Z., Chen G., Cai W., Cao P., Zhang C., Ding W., Lu X., Luo T., Qu X., et al. Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off. Addit. Manuf. 2020;34:101198. doi: 10.1016/j.addma.2020.101198. DOI

Horkavcová D., Novák P., Fialová I., Černý M., Jablonská E., Lipov J., Ruml T., Helebrant A. Titania sol-gel coatings containing silver on newly developed TiSi alloys and their antibacterial effect. Mater. Sci. Eng. C. 2017;76:25–30. doi: 10.1016/j.msec.2017.02.137. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...