Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33316967
PubMed Central
PMC7764597
DOI
10.3390/ma13245607
PII: ma13245607
Knihovny.cz E-zdroje
- Klíčová slova
- Ti-Si alloy, biomaterials, mechanical properties, reactive sintering,
- Publikační typ
- časopisecké články MeSH
Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young's modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young's modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young's modulus close to the human bone.
Zobrazit více v PubMed
Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K.J. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010;95:53–61. doi: 10.1002/jbm.b.31682. PubMed DOI
Li J.P., Li S.H., Van Blitterswijk C.A., de Groot K. A novel porous Ti6Al4V: Characterization and cell attachment. J. Biomed. Mater. Res. Part A. 2005;73:223–233. doi: 10.1002/jbm.a.30278. PubMed DOI
Ryan G., Pandit A., Apatsidis D.P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–2670. doi: 10.1016/j.biomaterials.2005.12.002. PubMed DOI
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Lee H., Jang T.-S., Song J., Kim H.-E., Jung H.-D. Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Mater. Lett. 2016;185:21–24. doi: 10.1016/j.matlet.2016.08.075. DOI
Prymak O., Bogdanski D., Köller M., Esenwein S.A., Muhr G., Beckmann F., Donath T., Assad M., Epple M. Morphological characterization and in vitro biocompatibility of a porous nickel–titanium alloy. Biomaterials. 2005;26:5801–5807. doi: 10.1016/j.biomaterials.2005.02.029. PubMed DOI
Školáková A., Novák P., Salvetr P., Moravec H., Šefl V., Deduytsche D., Detavernier C. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis. Metall. Mater. Trans. A. 2017;48:3559–3569. doi: 10.1007/s11661-017-4105-y. DOI
Salvetr P., Školáková A., Novák P., Vavřík J. Effect of Si Addition on Martensitic Transformation and Microstructure of NiTiSi Shape Memory Alloys. Metall. Mater. Trans. A. 2020;51:4434–4438. doi: 10.1007/s11661-020-05883-1. DOI
Salvetr P., Dlouhý J., Školáková A., Průša F., Novák P., Karlík M., Haušild P. Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering. Materials. 2019;12:4075. doi: 10.3390/ma12244075. PubMed DOI PMC
Bednarczyk W., Kawałko J., Wątroba M., Gao N., Starink M.J., Bała P., Langdon T.G. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Mater. Sci. Eng. A. 2020;776:139047. doi: 10.1016/j.msea.2020.139047. DOI
Ren F., Zhu W., Chu K. Fabrication and evaluation of bulk nanostructured cobalt intended for dental and orthopedic implants. J. Mech. Behav. Biomed. Mater. 2017;68:115–123. doi: 10.1016/j.jmbbm.2017.01.039. PubMed DOI
Yazdimamaghani M., Razavi M., Vashaee D., Moharamzadeh K., Boccaccini A.R., Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater. Sci. Eng. C. 2017;71:1253–1266. doi: 10.1016/j.msec.2016.11.027. PubMed DOI
Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Jt. Surgery. Br. Vol. 1999;81:907–914. doi: 10.1302/0301-620X.81B5.0810907. PubMed DOI
Levine B.R., Sporer S., Poggie R.A., Della Valle C.J., Jacobs J.J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27:4671–4681. doi: 10.1016/j.biomaterials.2006.04.041. PubMed DOI
Čapek J., Machová M., Fousová M., Kubásek J., Vojtěch D., Fojt J., Jablonská E., Lipov J., Ruml T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C. 2016;69:631–639. doi: 10.1016/j.msec.2016.07.027. PubMed DOI
Abdel-Hady Gepreel M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013;20:407–415. doi: 10.1016/j.jmbbm.2012.11.014. PubMed DOI
Khodaei M., Valanezhad A., Watanabe I., Yousefi R. Surface and mechanical properties of modified porous titanium scaffold. Surf. Coat. Technol. 2017;315:61–66. doi: 10.1016/j.surfcoat.2017.02.032. DOI
Gu Y.W., Yong M.S., Tay B.Y., Lim C.S. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C. 2009;29:1515–1520. doi: 10.1016/j.msec.2008.11.003. DOI
Rao S., Ushida T., Tateishi T., Okazaki Y., Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio Med. Mater. Eng. 1996;6:79–86. doi: 10.3233/BME-1996-6202. PubMed DOI
Assad M., Chernyshov A.V., Jarzem P., Leroux M.A., Coillard C., Charette S., Rivard C.H. Porous titanium-nickel for intervertebral fusion in a sheep model: Part 2. Surface analysis and nickel release assessment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003;64:121–129. doi: 10.1002/jbm.b.10531. PubMed DOI
Hsu H.-C., Wu S.-C., Hsu S.-K., Li Y.-C., Ho W.-F. Structure and mechanical properties of as-cast Ti-Si alloys. Intermetallics. 2014;47:11–16. doi: 10.1016/j.intermet.2013.12.004. DOI
Knaislová A., Novák P. Preparation of Porous Biomaterial Based on Ti-Si Alloys. Manuf. Technol. 2018;18:411–417. doi: 10.21062/ujep/114.2018/a/1213-2489/MT/18/3/411. DOI
Arifvianto B., Leeflang M.A., Zhou J. The compression behaviors of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds with the space holder method. Powder Technol. 2015;284:112–121. doi: 10.1016/j.powtec.2015.06.033. DOI
Daudt N.d.F., Bram M., Barbosa A.P.C., Laptev A.M., Alves C. Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment. J. Mater. Process. Technol. 2017;239:202–209. doi: 10.1016/j.jmatprotec.2016.08.022. DOI
Müller L., Müller F.A. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–189. doi: 10.1016/j.actbio.2005.11.001. PubMed DOI
ISO . International Organization for Standardization. ISO; Geneva, Switzerland: 2009. 10993–5: 2009 Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity.
Thümmler F., Oberacker R. An introduction to Powder Metallurgy. Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining; London, UK: 1993.
Pabst W., Gregorová E., Uhlířová T. Microstructure characterization via stereological relations—A shortcut for beginners. Mater. Charact. 2015;105:1–12. doi: 10.1016/j.matchar.2015.04.013. DOI
Massalski T.B. Binary alloy phase diagrams. ASM Int. 1992;3:2874.
Novák P., Kubásek J., Šerák J., Vojtěch D., Michalcová A. Mechanism and kinetics of the intermediary phase formation in Ti–Al and Ti–Al–Si systems during reactive sintering. Int. J. Mater. Res. 2009;100:353–355. doi: 10.3139/146.110028. DOI
Trambukis J., Munir Z.A. Effect of Particle Dispersion on the Mechanism of Combustion Synthesis of Titanium Silicide. J. Am. Ceram. Soc. 1990;73:1240–1245. doi: 10.1111/j.1151-2916.1990.tb05186.x. DOI
Riley D.P. Synthesis and characterization of SHS bonded Ti5Si3 on Ti substrates. Intermetallics. 2006;14:770–775. doi: 10.1016/j.intermet.2005.11.009. DOI
Riley D.P., Oliver C.P., Kisi E.H. In-situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS) Intermetallics. 2006;14:33–38. doi: 10.1016/j.intermet.2005.04.004. DOI
Tang H.P., Wang J., Qian M. 28-Porous titanium structures and applications. In: Qian M., Froes F.H., editors. Titanium Powder Metallurgy. Butterworth-Heinemann; Boston, MA, USA: 2015. pp. 533–554. DOI
Fatemi A. Ullmann’s Encyclopedia of Industrial Chemistry. The Charleston Company; Denver, CO, USA: 2000. Mechanical Properties and Testing of Metallic Materials. DOI
Yaszemski M.J., Payne R.G., Hayes W.C., Langer R., Mikos A.G. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17:175–185. doi: 10.1016/0142-9612(96)85762-0. PubMed DOI
Oh I.-H., Nomura N., Masahashi N., Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 2003;49:1197–1202. doi: 10.1016/j.scriptamat.2003.08.018. DOI
Ding W., Wang Z., Chen G., Cai W., Zhang C., Tao Q., Qu X., Qin M. Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization. Corros. Sci. 2021;178:109080. doi: 10.1016/j.corsci.2020.109080. DOI
Tao Q., Wang Z., Chen G., Cai W., Cao P., Zhang C., Ding W., Lu X., Luo T., Qu X., et al. Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off. Addit. Manuf. 2020;34:101198. doi: 10.1016/j.addma.2020.101198. DOI
Horkavcová D., Novák P., Fialová I., Černý M., Jablonská E., Lipov J., Ruml T., Helebrant A. Titania sol-gel coatings containing silver on newly developed TiSi alloys and their antibacterial effect. Mater. Sci. Eng. C. 2017;76:25–30. doi: 10.1016/j.msec.2017.02.137. PubMed DOI