Immunoassay of Glomalin by Quartz Crystal Microbalance Biosensor Containing Iron Oxide Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32952559
PubMed Central
PMC7481945
DOI
10.1155/2020/8844151
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Glomalin is a soil protein resembling heat shock protein (HSP) 60 and exerting high affinity to metals, causing retention of water in the environment and improving mechanical stability of soil. Currently, glomalin is determined in the soil or other samples by combination of autoclaving extraction and total protein determination typically by the Bradford method. In this paper, a piezoelectric biosensor was prepared to determine glomalin in a label-free measurement. The biosensor contained antibodies immobilized on quartz crystal microbalance (QCM), and the recognition layer was stabilized by iron oxide nanoparticles. The assay was tested on real soil samples and compared with the standard Bradford assay. Limit of detection of the assay was equal to 2.4 µg/g for a soil extract with a volume of 50 µl. The assay takes approximately half of an hour and was fully correlated to the Bradford assay. The biosensor had significant advantages than the other methods: it worked in a label-free mode and was fully applicable for practical samples.
Zobrazit více v PubMed
Wang Q., Lu H., Chen J., et al. Interactions of soil metals with glomalin-related soil protein as soil pollution bioindicators in mangrove wetland ecosystems. Science of the Total Environment. 2020;709:p. 136051. doi: 10.1016/j.scitotenv.2019.136051. PubMed DOI
Vlcek V., Pohanka M. Glomalin-an interesting protein part of the soil organic matter. Soil and Water Research. 2020;15:67–74.
Wang F., Adams C. A., Yang W., Sun Y., Shi Z. Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: implications for cleaner agricultural production. Critical Reviews in Environmental Science and Technology. 2020;50(15):p. 1580. doi: 10.1080/10643389.2019.1665945. DOI
Janos D. P., Garamszegi S., Beltran B. Glomalin extraction and measurement. Soil Biology and Biochemistry. 2008;40(3):728–739. doi: 10.1016/j.soilbio.2007.10.007. DOI
Moragues-Saitua L., Merino-Martín L., Stokes A., Staunton S. Towards meaningful quantification of glomalin-related soil protein (GRSP) taking account of interference in the coomassie blue (Bradford) assay. European Journal of Soil Science. 2019;70(4):727–735. doi: 10.1111/ejss.12698. DOI
Jorge-Araújo P., Quiquampoix H., Matumoto-Pintro P. T., Staunton S. Glomalin-related soil protein in French temperate forest soils: interference in the bradford assay caused by co-extracted humic substances. European Journal of Soil Science. 2015;66(2):311–319. doi: 10.1111/ejss.12218. DOI
Reyna D. L., Wall L. G. Revision of two colorimetric methods to quantify glomalin-related compounds in soils subjected to different managements. Biology and Fertility of Soils. 2014;50(2):395–400. doi: 10.1007/s00374-013-0834-2. DOI
Koide R. T., Peoples M. S. Behavior of bradford-reactive substances is consistent with predictions for glomalin. Applied Soil Ecology. 2013;63:8–14. doi: 10.1016/j.apsoil.2012.09.015. DOI
Wright S. F., Jawson L. A pressure cooker method to extract glomalin from soils. Soil Science Society of America Journal. 2001;65(6):1734–1735. doi: 10.2136/sssaj2001.1734. DOI
Malekzadeh E., Aliasgharzad N., Majidi J., Aghebati-Maleki L., Abdolalizadeh J. Cd-induced production of glomalin by arbuscular mycorrhizal fungus (rhizophagus irregularis) as estimated by monoclonal antibody assay. Environmental Science and Pollution Research. 2016;23(20):20711–20718. doi: 10.1007/s11356-016-7283-z. PubMed DOI
Liu Y., Pan M., Wang W., et al. Plasmonic and photothermal immunoassay via enzyme-triggered crystal growth on gold nanostars. Analytical Chemistry. 2019;91(3):2086–2092. doi: 10.1021/acs.analchem.8b04517. PubMed DOI
Yu Z., Tang Y., Cai G., Ren R., Tang D. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Analytical Chemistry. 2019;91(2):1222–1226. doi: 10.1021/acs.analchem.8b04635. PubMed DOI
Luo Z., Qi Q., Zhang L., Zeng R., Su L., Tang D. Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Analytical Chemistry. 2019;91(6):4149–4156. doi: 10.1021/acs.analchem.8b05959. PubMed DOI
Ma H., Zhao Y., Liu Y., et al. A compatible sensitivity enhancement strategy for electrochemiluminescence immunosensors based on the biomimetic melanin-like deposition. Analytical Chemistry. 2017;89(24):13049–13053. doi: 10.1021/acs.analchem.7b04397. PubMed DOI
Ren R., Cai G., Yu Z., Zeng Y., Tang D. Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Analytical Chemistry. 2018;90(18):11099–11105. doi: 10.1021/acs.analchem.8b03538. PubMed DOI
Chen Z., Liu Y., Wang Y., Zhao X., Li J. Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin a-integrating gold-nanoparticle-modified Ru (bpy)32+-doped silica nanoprobe. Analytical Chemistry. 2013;85(9):4431–4438. doi: 10.1021/ac303572g. PubMed DOI
Pohanka M. The piezoelectric biosensors: principles and applications, a review. International Journal of Electrochemical Science. 2017;12:496–506. doi: 10.20964/2017.01.44. DOI
Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11(3):p. 448. doi: 10.3390/ma11030448. PubMed DOI PMC
Pohanka M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta. 2018;178:970–973. doi: 10.1016/j.talanta.2017.10.031. PubMed DOI
Pirich C. L., De Freitas R. A., Torresi R. M., Picheth G. F., Sierakowski M. R. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics. 2017;92:47–53. doi: 10.1016/j.bios.2017.01.068. PubMed DOI
Wang Z. L. Progress in piezotronics and piezo-phototronics. Advanced Materials. 2012;24(34):4632–4646. doi: 10.1002/adma.201104365. PubMed DOI
Wright S. F., Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science. 1996;161(9):575–586. doi: 10.1097/00010694-199609000-00003. DOI
Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Nautiyal P., Rajput R., Pandey D., Arunachalam K., Arunachalam A. Role of glomalin in soil carbon storage and its variation across land uses in temperate himalayan regime. Biocatalysis and Agricultural Biotechnology. 2019;21:p. 101311. doi: 10.1016/j.bcab.2019.101311. DOI
Huang X., Chen Q., Pan W., Hu J., Yao Y. Assessing the mass sensitivity for different electrode materials commonly used in quartz crystal microbalances (QCMs) Sensors. 2019;19(18):p. 3968. doi: 10.3390/s19183968. PubMed DOI PMC
Kim J., Urchaga P., Baranton S., Coutanceau C., Jerkiewicz G. Interfacial structure of atomically flat polycrystalline Pt electrodes and modified sauerbrey equation. Physical Chemistry Chemical Physics. 2017;19(33):21955–21963. doi: 10.1039/c7cp02528a. PubMed DOI
Heller G. T., Mercer-Smith A. R., Johal M. S. Quartz microbalance technology for probing biomolecular interactions. Methods in Molecular Biology. 2015;1278:153–164. doi: 10.1007/978-1-4939-2425-7_9. PubMed DOI
Kang Q., Shen Q., Zhang P., Wang H., Sun Y., Shen D. Unfound associated resonant model and its impact on response of a quartz crystal microbalance in the liquid phase. Analytical Chemistry. 2018;90(4):2796–2804. doi: 10.1021/acs.analchem.7b04906. PubMed DOI
Huang X., Bai Q., Hu J., Hou D. A practical model of quartz crystal microbalance in actual applications. Sensors (Basel) 2017;17:p. 1785. doi: 10.3390/s17071476. PubMed DOI PMC
Anderson N. L., Anderson N. G. The human plasma proteome. Molecular & Cellular Proteomics. 2002;1(11):845–867. doi: 10.1074/mcp.r200007-mcp200. PubMed DOI
Bal W., Sokolowska M., Kurowska E., Faller P. Binding of transition metal ions to albumin: sites, affinities and rates. Biochimica et Biophysica Acta (BBA) 2013;1830(12):5444–5455. doi: 10.1016/j.bbagen.2013.06.018. PubMed DOI
Zurawska-Plaksej E., Rorbach-Dolata A., Wiglusz K., Piwowar A. The effect of glycation on bovine serum albumin conformation and ligand binding properties with regard to gliclazide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;189:625–633. doi: 10.1016/j.saa.2017.08.071. PubMed DOI
Nishi K., Yamasaki K., Otagiri M. Serum albumin, lipid and drug binding. Subcellular Biochemistry. 2020;94:383–397. doi: 10.1007/978-3-030-41769-7_15. PubMed DOI
Duce C., Bramanti E., Ghezzi L., et al. Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Transactions. 2013;42(17):5975–5984. doi: 10.1039/c2dt32203j. PubMed DOI
Villa P., Pollarolo L., Degano I., et al. A milk and ochre paint mixture used 49,000 years ago at sibudu, South Africa. PLoS One. 2015;10 doi: 10.1371/journal.pone.0131273.e0131273 PubMed DOI PMC
Wadley L. Putting ochre to the test: replication studies of adhesives that may have been used for hafting tools in the middle stone age. Journal of Human Evolution. 2005;49(5):587–601. doi: 10.1016/j.jhevol.2005.06.007. PubMed DOI
Pohanka M., Vlcek V. Assay of glomalin using a quartz crystal microbalance biosensor. Electroanalysis. 2018;30(3):453–458. doi: 10.1002/elan.201700772. DOI