Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications

. 2018 Mar 19 ; 11 (3) : . [epub] 20180319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29562700

Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.

Zobrazit více v PubMed

Zu H., Wu H., Wang Q.M. High-temperature piezoelectric crystals for acoustic wave sensor applications. IEEE. 2016;63:486–505. doi: 10.1109/TUFFC.2016.2527599. PubMed DOI

Hagood N.W., von Flotow A.F. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991;146:243–268. doi: 10.1016/0022-460X(91)90762-9. DOI

Hees J., Heidrich N., Pletschen W., Sah R.E., Wolfer M., Williams O.A., Lebedev V., Nebel C.E., Ambacher O. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology. 2013;24:025601. doi: 10.1088/0957-4484/24/2/025601. PubMed DOI

Meyers F.N., Loh K.J., Dodds J.S., Baltazar A. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology. 2013;24:185501. doi: 10.1088/0957-4484/24/18/185501. PubMed DOI

Ferreira P., Hou R.Z., Wu A., Willinger M.G., Vilarinho P.M., Mosa J., Laberty-Robert C., Boissiere C., Grosso D., Sanchez C. Nanoporous piezo- and ferroelectric thin films. Langmuir. 2012;28:2944–2949. doi: 10.1021/la204168w. PubMed DOI

Wang H., Wereszczak A.A. Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008;55:2559–2570. doi: 10.1109/TUFFC.2008.972. PubMed DOI

Struth B., Decher G., Schmitt J., Hofmeister W., Neisendorfer F., Pietsch U., Brezesinski G., Mohwald H. Chemical modification of topaz surfaces. Mater. Sci. Eng. C. 1999;10:97–101. doi: 10.1016/S0928-4931(99)00094-6. DOI

Levitskii R.R., Zachek I.R., Verkholyak T.M., Moina A.P. Dielectric, piezoelectric, and elastic properties of the rochelle salt NaKC4H4O6·4H2O: A theory. Phys. Rev. B. 2003;67:174112. doi: 10.1103/PhysRevB.67.174112. DOI

Sawyer C.B., Tower C.H. Rochelle salt as a dielectric. Phys. Rev. 1930;35:269. doi: 10.1103/PhysRev.35.269. DOI

Fukada E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1277–1290. doi: 10.1109/58.883516. PubMed DOI

Sinha T.K., Ghosh S.K., Maiti R., Jana S., Adhikari B., Mandal D., Ray S.K. Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS Appl. Mater. Interfaces. 2016;8:14986–14993. doi: 10.1021/acsami.6b01547. PubMed DOI

Garcia-Martinez G., Bustabad E.A., Perrot H., Gabrielli C., Bucur B., Lazerges M., Rose D., Rodriguez-Pardo L., Farina J., Compere C., et al. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 mHz electronic oscillator circuit. Sensors. 2011;11:7656–7664. doi: 10.3390/s110807656. PubMed DOI PMC

Pohanka M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci. 2017;12:496–506. doi: 10.20964/2017.01.44. DOI

Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI

Zhang C., Liu N., Yang J., Chen W. Thickness-shear vibration of at-cut quartz plates carrying finite-size particles with rotational degree of freedom and rotatory inertia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011;58:666–670. doi: 10.1109/TUFFC.2011.1851. PubMed DOI

Kanazawa K.K., Gordon J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985;57:1770–1771. doi: 10.1021/ac00285a062. DOI

Shana Z.A., Radtke D.E., Kelkar U.R., Josse F., Haworth D.T. Theory and application of a quartz resonator as a sensor for viscous liquids. Anal. Chim. Acta. 1990;231:317–320. doi: 10.1016/S0003-2670(00)86434-X. DOI

Muratsugu M., Ohta F., Miya Y., Hosokawa T., Kurosawa S., Kamo N., Ikeda H. Quartz-crystal microbalance for the detection of microgram quantities of human serum-albumin—Relationship between the frequency change and the mass of protein adsorbed. Anal. Chem. 1993;65:2933–2937. doi: 10.1021/ac00068a036. PubMed DOI

Deng T., Li J.S., Wang H., Shen G.L., Yu R.Q. Piezoelectric immunoassay for complement c4 based on a nafion-modified interface for antibody immobilization. J. Immunol. Methods. 2005;299:1–8. doi: 10.1016/j.jim.2004.11.004. PubMed DOI

Funari R., Terracciano I., Della Ventura B., Ricci S., Cardi T., D’Agostino N., Velotta R. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor. J. Agric. Food Chem. 2017;65:1281–1289. doi: 10.1021/acs.jafc.6b04830. PubMed DOI

Maraldo D., Mutharasan R. 10-min assay for detecting Escherichia coli O157:H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J. Food Prot. 2007;70:1670–1677. doi: 10.4315/0362-028X-70.7.1670. PubMed DOI

Maraldo D., Mutharasan R. Preparation-free method for detecting Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef particulates. J. Food Prot. 2007;70:2651–2655. doi: 10.4315/0362-028X-70.11.2651. PubMed DOI

Campbell G.A., Uknalis J., Tu S.I., Mutharasan R. Detect of Escherichia coli O157:H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosens. Bioelectron. 2007;22:1296–1302. doi: 10.1016/j.bios.2006.05.028. PubMed DOI

Olsen E.V., Sorokulova I.B., Petrenko V.A., Chen I.H., Brbaree J.M., Vodyanoy V.J. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of salmonella typhimurium. Biosens. Bioelectron. 2006;21:1434–1442. doi: 10.1016/j.bios.2005.06.004. PubMed DOI

Pohanka M., Skladal P. Piezoelectric immunosensor for the direct and rapid detection of francisella tularensis. Folia Microbiol. 2007;52:325–330. doi: 10.1007/BF02932086. PubMed DOI

Salam F., Uludag Y., Tothill I.E. Real-time and sensitive detection of salmonella typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta. 2013;115:761–767. doi: 10.1016/j.talanta.2013.06.034. PubMed DOI

Guo X., Lin C.S., Chen S.H., Ye R., Wu V.C. A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens. Bioelectron. 2012;38:177–183. doi: 10.1016/j.bios.2012.05.024. PubMed DOI

Pohanka M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta. 2018;178:970–973. doi: 10.1016/j.talanta.2017.10.031. PubMed DOI

Kosslinger C., Drost S., Aberl F., Wolf H. Quartz-crystal microbalance for immunosensing. Fresenius J. Anal. Chem. 1994;349:349–354. doi: 10.1007/BF00326598. DOI

Ramos-Jesus J., Carvalho K.A., Fonseca R.A., Oliveira G.G., Melo S.M., Alcantara-Neves N.M., Dutra R.F. A piezoelectric immunosensor for leishmania chagasi antibodies in canine serum. Anal. Bioanal. Chem. 2011;401:917–925. doi: 10.1007/s00216-011-5136-7. PubMed DOI

Pohanka M., Pavlis O., Skladal P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta. 2007;71:981–985. doi: 10.1016/j.talanta.2006.05.074. PubMed DOI

Crosson C., Rossi C. Quartz crystal microbalance immunosensor for the quantification of immunoglobulin g in bovine milk. Biosens. Bioelectron. 2013;42:453–459. doi: 10.1016/j.bios.2012.11.010. PubMed DOI

Naklua W., Suedee R., Lieberzeit P.A. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors. Biosens. Bioelectron. 2016;81:117–124. doi: 10.1016/j.bios.2016.02.047. PubMed DOI

Hussain M., Kotova K., Lieberzeit P.A. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors. 2016;16:1011. doi: 10.3390/s16071011. PubMed DOI PMC

Dai J., Zhang Y., Pan M., Kong L., Wang S. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods. J. Agric. Food Chem. 2014;62:5269–5274. doi: 10.1021/jf501092u. PubMed DOI

Zhang Y.L., Zhang J., Dai C.M., Zhou X.F., Liu S.G. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe(3)O(4) Carbohydr. Polym. 2013;97:809–816. doi: 10.1016/j.carbpol.2013.05.072. PubMed DOI

Xu L., Huang Y.A., Zhu Q.J., Ye C. Chitosan in molecularly-imprinted polymers: Current and future prospects. Int. J. Mol. Sci. 2015;16:18328–18347. doi: 10.3390/ijms160818328. PubMed DOI PMC

Zhang W., Zhu Z., Zhang H., Qiu Y. Selective removal of the genotoxic compound 2-aminopyridine in water using molecularly imprinted polymers based on magnetic chitosan and beta-cyclodextrin. Int. J. Environ. Res. Public Health. 2017;14:991. doi: 10.3390/ijerph14090991. PubMed DOI PMC

Liu Y., Liu Z., Hu X., Xu Z. Beta-cyclodextrin molecularly imprinted solid-phase microextraction coatings for selective recognition of polychlorophenols in water samples. Anal. Bioanal. Chem. 2018;410:509–519. doi: 10.1007/s00216-017-0746-3. PubMed DOI

Fan H., Wang J., Meng Q., Tian Y., Xu X., Jin Z. Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-alpha-d-maltosyl-beta-cyclodextrin. J. Sep. Sci. 2017;40:4653–4660. doi: 10.1002/jssc.201700808. PubMed DOI

Liu G., Li T., Yang X., She Y., Wang M., Wang J., Zhang M., Wang S., Jin F., Jin M., et al. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on fe3o4-chitosan. Carbohydr. Polym. 2016;137:75–81. doi: 10.1016/j.carbpol.2015.10.062. PubMed DOI

Ahmed M.A., Abdelbar N.M., Mohamed A.A. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of rose bengal from wastewater. Int. J. Biol. Macromol. 2018;107:1046–1053. doi: 10.1016/j.ijbiomac.2017.09.082. PubMed DOI

Kumar Singh A., Singh M. QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films. Biosens. Bioelectron. 2015;74:711–717. doi: 10.1016/j.bios.2015.07.027. PubMed DOI

Gupta N., Shah K., Singh M. An epitope-imprinted piezoelectric diagnostic tool for neisseria meningitidis detection. J. Mol. Recognit. 2016;29:572–579. doi: 10.1002/jmr.2557. PubMed DOI

Singh A.K., Singh M. Electrochemical and piezoelectric monitoring of taurine via electropolymerized molecularly imprinted films. J. Mol. Recognit. 2017;30:13. doi: 10.1002/jmr.2652. PubMed DOI

Ebarvia B.S., Ubando I.E., Sevilla F.B., III Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta. 2015;144:1260–1265. doi: 10.1016/j.talanta.2015.08.001. PubMed DOI

Ebarvia B.S., Binag C.A., Sevilla F. Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer. Anal. Bioanal. Chem. 2004;378:1331–1337. doi: 10.1007/s00216-003-2433-9. PubMed DOI

Bartold K., Pietrzyk-Le A., Huynh T.P., Iskierko Z., Sosnowska M., Noworyta K., Lisowski W., Sannicolo F., Cauteruccio S., Licandro E., et al. Programmed transfer of sequence information into a molecularly imprinted polymer for hexakis(2,2′-bithien-5-yl) DNA analogue formation toward single-nucleotide-polymorphism detection. ACS Appl. Mater. Interfaces. 2017;9:3948–3958. doi: 10.1021/acsami.6b14340. PubMed DOI

Sivashankar S., Sapsanis C., Agambayev S., Buttner U., Salama K.N. Label-free detection of sex determining region y (sry) via capacitive biosensor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016;10:7591690. PubMed

de las Heras A., Carreno C.A., de Lorenzo V. Stable implantation of orthogonal sensor circuits in gram-negative bacteria for environmental release. Environ. Microbiol. 2008;10:3305–3316. doi: 10.1111/j.1462-2920.2008.01722.x. PubMed DOI

Bui V.N., Nguyen T.T., Mai C.T., Bettarel Y., Hoang T.Y., Trinh T.T., Truong N.H., Chu H.H., Nguyen V.T., Nguyen H.D., et al. Procarcinogens—Determination and evaluation by yeast-based biosensor transformed with plasmids incorporating rad54 reporter construct and cytochrome p450 genes. PLoS ONE. 2016;11:e0168721. doi: 10.1371/journal.pone.0168721. PubMed DOI PMC

Lv J., Zhao S., Wu S., Wang Z. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-lr sensing. Biosens. Bioelectron. 2017;90:203–209. doi: 10.1016/j.bios.2016.09.110. PubMed DOI

Karimi A., Hayat A., Andreescu S. Biomolecular detection at ssdna-conjugated nanoparticles by nano-impact electrochemistry. Biosens. Bioelectron. 2017;87:501–507. doi: 10.1016/j.bios.2016.08.108. PubMed DOI

Kirimli C.E., Shih W.H., Shih W.Y. DNA hybridization detection with 100 zm sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm. Analyst. 2014;139:2754–2763. doi: 10.1039/C4AN00215F. PubMed DOI PMC

Datta M., Desai D., Kumar A. Gene specific DNA sensors for diagnosis of pathogenic infections. Indian J. Microbiol. 2017;57:139–147. doi: 10.1007/s12088-017-0650-8. PubMed DOI PMC

Lian Y., He F., Wang H., Tong F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens. Bioelectron. 2015;65:314–319. doi: 10.1016/j.bios.2014.10.017. PubMed DOI

Rijal K., Mutharasan R. A method for DNA-based detection of E. coli O157:H7 in a proteinous background using piezoelectric-excited cantilever sensors. Analyst. 2013;138:2943–2950. doi: 10.1039/c3an36814a. PubMed DOI

Chen S.H., Chuang Y.C., Lu Y.C., Lin H.C., Yang Y.L., Lin C.S. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology. 2009;20:215501. doi: 10.1088/0957-4484/20/21/215501. PubMed DOI

Pang L., Li J., Jiang J., Shen G., Yu R. DNA point mutation detection based on DNA ligase reaction and nano-au amplification: A piezoelectric approach. Anal. Biochem. 2006;358:99–103. doi: 10.1016/j.ab.2006.06.038. PubMed DOI

Ye M., Zhang Y., Li H., Tan P., Tang H., Yao S. A novel method for the detection of point mutation in DNA using single-base-coded cds nanoprobes. Biosens. Bioelectron. 2009;24:2339–2345. doi: 10.1016/j.bios.2008.12.002. PubMed DOI

Gabius H.J., Siebert H.C., Andre S., Jimenez-Barbero J., Rudiger H. Chemical biology of the sugar code. ChemBioChem. 2004;5:740–764. doi: 10.1002/cbic.200300753. PubMed DOI

Zeng X.Q., Qu K., Rehman A. Glycosylated conductive polymer: A multimodal biointerface for studying carbohydrate-protein interactions. Acc. Chem. Res. 2016;49:1624–1633. doi: 10.1021/acs.accounts.6b00181. PubMed DOI

Pesquero N.C., Carvalho F.C., Faria R.C., Roque-Barreira M.C., Bueno P.R. Artinm binding effinities and kinetic interaction with leukemia cells: A quartz crystal microbalance bioelectroanalysis on the cytotoxic effect. Electroanalysis. 2017;29:1554–1558. doi: 10.1002/elan.201700093. DOI

Pizzoni D., Mascini M., Lanzone V., Del Carlo M., Di Natale C., Compagnone D. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach. Biosens. Bioelectron. 2014;52:247–254. doi: 10.1016/j.bios.2013.08.044. PubMed DOI

Mascini M., Pizzoni D., Perez G., Chiarappa E., Di Natale C., Pittia P., Compagnone D. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements. Biosens. Bioelectron. 2017;93:161–169. doi: 10.1016/j.bios.2016.09.028. PubMed DOI

Compagnone D., Fusella G.C., Del Carlo M., Pittia P., Martinelli E., Tortora L., Paolesse R., Di Natale C. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas. Biosens. Bioelectron. 2013;42:618–625. doi: 10.1016/j.bios.2012.10.096. PubMed DOI

Li C., Chen X., Zhang F.Y., He X.X., Fang G.Z., Liu J.F., Wang S. Design of cyclic peptide based glucose receptors and their application in glucose sensing. Anal. Chem. 2017;89:10431–10438. doi: 10.1021/acs.analchem.7b02430. PubMed DOI

Capobianco J.A., Shih W.Y., Adams G.P., Shih W.H. Label-free growth receptor-2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens. Actuators B Chem. 2011;160:349–356. doi: 10.1016/j.snb.2011.07.060. PubMed DOI PMC

Ben Yahia M., Hsan L.B.H., Knani S., Nasri H., Ben Lamine A. Modeling of adsorption isotherms of zinc nitrate on a thin layer of porphyrin. J. Mol. Liq. 2016;222:576–585. doi: 10.1016/j.molliq.2016.07.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace