Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29562700
PubMed Central
PMC5873027
DOI
10.3390/ma11030448
PII: ma11030448
Knihovny.cz E-zdroje
- Klíčová slova
- QCM, acoustic sensor, affinity, anisotropy, biosensor, immunosensor, label free, oscillation, piezoelectric, quartz crystal microbalance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.
Zobrazit více v PubMed
Zu H., Wu H., Wang Q.M. High-temperature piezoelectric crystals for acoustic wave sensor applications. IEEE. 2016;63:486–505. doi: 10.1109/TUFFC.2016.2527599. PubMed DOI
Hagood N.W., von Flotow A.F. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991;146:243–268. doi: 10.1016/0022-460X(91)90762-9. DOI
Hees J., Heidrich N., Pletschen W., Sah R.E., Wolfer M., Williams O.A., Lebedev V., Nebel C.E., Ambacher O. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology. 2013;24:025601. doi: 10.1088/0957-4484/24/2/025601. PubMed DOI
Meyers F.N., Loh K.J., Dodds J.S., Baltazar A. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology. 2013;24:185501. doi: 10.1088/0957-4484/24/18/185501. PubMed DOI
Ferreira P., Hou R.Z., Wu A., Willinger M.G., Vilarinho P.M., Mosa J., Laberty-Robert C., Boissiere C., Grosso D., Sanchez C. Nanoporous piezo- and ferroelectric thin films. Langmuir. 2012;28:2944–2949. doi: 10.1021/la204168w. PubMed DOI
Wang H., Wereszczak A.A. Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008;55:2559–2570. doi: 10.1109/TUFFC.2008.972. PubMed DOI
Struth B., Decher G., Schmitt J., Hofmeister W., Neisendorfer F., Pietsch U., Brezesinski G., Mohwald H. Chemical modification of topaz surfaces. Mater. Sci. Eng. C. 1999;10:97–101. doi: 10.1016/S0928-4931(99)00094-6. DOI
Levitskii R.R., Zachek I.R., Verkholyak T.M., Moina A.P. Dielectric, piezoelectric, and elastic properties of the rochelle salt NaKC4H4O6·4H2O: A theory. Phys. Rev. B. 2003;67:174112. doi: 10.1103/PhysRevB.67.174112. DOI
Sawyer C.B., Tower C.H. Rochelle salt as a dielectric. Phys. Rev. 1930;35:269. doi: 10.1103/PhysRev.35.269. DOI
Fukada E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1277–1290. doi: 10.1109/58.883516. PubMed DOI
Sinha T.K., Ghosh S.K., Maiti R., Jana S., Adhikari B., Mandal D., Ray S.K. Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS Appl. Mater. Interfaces. 2016;8:14986–14993. doi: 10.1021/acsami.6b01547. PubMed DOI
Garcia-Martinez G., Bustabad E.A., Perrot H., Gabrielli C., Bucur B., Lazerges M., Rose D., Rodriguez-Pardo L., Farina J., Compere C., et al. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 mHz electronic oscillator circuit. Sensors. 2011;11:7656–7664. doi: 10.3390/s110807656. PubMed DOI PMC
Pohanka M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci. 2017;12:496–506. doi: 10.20964/2017.01.44. DOI
Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI
Zhang C., Liu N., Yang J., Chen W. Thickness-shear vibration of at-cut quartz plates carrying finite-size particles with rotational degree of freedom and rotatory inertia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011;58:666–670. doi: 10.1109/TUFFC.2011.1851. PubMed DOI
Kanazawa K.K., Gordon J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985;57:1770–1771. doi: 10.1021/ac00285a062. DOI
Shana Z.A., Radtke D.E., Kelkar U.R., Josse F., Haworth D.T. Theory and application of a quartz resonator as a sensor for viscous liquids. Anal. Chim. Acta. 1990;231:317–320. doi: 10.1016/S0003-2670(00)86434-X. DOI
Muratsugu M., Ohta F., Miya Y., Hosokawa T., Kurosawa S., Kamo N., Ikeda H. Quartz-crystal microbalance for the detection of microgram quantities of human serum-albumin—Relationship between the frequency change and the mass of protein adsorbed. Anal. Chem. 1993;65:2933–2937. doi: 10.1021/ac00068a036. PubMed DOI
Deng T., Li J.S., Wang H., Shen G.L., Yu R.Q. Piezoelectric immunoassay for complement c4 based on a nafion-modified interface for antibody immobilization. J. Immunol. Methods. 2005;299:1–8. doi: 10.1016/j.jim.2004.11.004. PubMed DOI
Funari R., Terracciano I., Della Ventura B., Ricci S., Cardi T., D’Agostino N., Velotta R. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor. J. Agric. Food Chem. 2017;65:1281–1289. doi: 10.1021/acs.jafc.6b04830. PubMed DOI
Maraldo D., Mutharasan R. 10-min assay for detecting Escherichia coli O157:H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J. Food Prot. 2007;70:1670–1677. doi: 10.4315/0362-028X-70.7.1670. PubMed DOI
Maraldo D., Mutharasan R. Preparation-free method for detecting Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef particulates. J. Food Prot. 2007;70:2651–2655. doi: 10.4315/0362-028X-70.11.2651. PubMed DOI
Campbell G.A., Uknalis J., Tu S.I., Mutharasan R. Detect of Escherichia coli O157:H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosens. Bioelectron. 2007;22:1296–1302. doi: 10.1016/j.bios.2006.05.028. PubMed DOI
Olsen E.V., Sorokulova I.B., Petrenko V.A., Chen I.H., Brbaree J.M., Vodyanoy V.J. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of salmonella typhimurium. Biosens. Bioelectron. 2006;21:1434–1442. doi: 10.1016/j.bios.2005.06.004. PubMed DOI
Pohanka M., Skladal P. Piezoelectric immunosensor for the direct and rapid detection of francisella tularensis. Folia Microbiol. 2007;52:325–330. doi: 10.1007/BF02932086. PubMed DOI
Salam F., Uludag Y., Tothill I.E. Real-time and sensitive detection of salmonella typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta. 2013;115:761–767. doi: 10.1016/j.talanta.2013.06.034. PubMed DOI
Guo X., Lin C.S., Chen S.H., Ye R., Wu V.C. A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens. Bioelectron. 2012;38:177–183. doi: 10.1016/j.bios.2012.05.024. PubMed DOI
Pohanka M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta. 2018;178:970–973. doi: 10.1016/j.talanta.2017.10.031. PubMed DOI
Kosslinger C., Drost S., Aberl F., Wolf H. Quartz-crystal microbalance for immunosensing. Fresenius J. Anal. Chem. 1994;349:349–354. doi: 10.1007/BF00326598. DOI
Ramos-Jesus J., Carvalho K.A., Fonseca R.A., Oliveira G.G., Melo S.M., Alcantara-Neves N.M., Dutra R.F. A piezoelectric immunosensor for leishmania chagasi antibodies in canine serum. Anal. Bioanal. Chem. 2011;401:917–925. doi: 10.1007/s00216-011-5136-7. PubMed DOI
Pohanka M., Pavlis O., Skladal P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta. 2007;71:981–985. doi: 10.1016/j.talanta.2006.05.074. PubMed DOI
Crosson C., Rossi C. Quartz crystal microbalance immunosensor for the quantification of immunoglobulin g in bovine milk. Biosens. Bioelectron. 2013;42:453–459. doi: 10.1016/j.bios.2012.11.010. PubMed DOI
Naklua W., Suedee R., Lieberzeit P.A. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors. Biosens. Bioelectron. 2016;81:117–124. doi: 10.1016/j.bios.2016.02.047. PubMed DOI
Hussain M., Kotova K., Lieberzeit P.A. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM. Sensors. 2016;16:1011. doi: 10.3390/s16071011. PubMed DOI PMC
Dai J., Zhang Y., Pan M., Kong L., Wang S. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods. J. Agric. Food Chem. 2014;62:5269–5274. doi: 10.1021/jf501092u. PubMed DOI
Zhang Y.L., Zhang J., Dai C.M., Zhou X.F., Liu S.G. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe(3)O(4) Carbohydr. Polym. 2013;97:809–816. doi: 10.1016/j.carbpol.2013.05.072. PubMed DOI
Xu L., Huang Y.A., Zhu Q.J., Ye C. Chitosan in molecularly-imprinted polymers: Current and future prospects. Int. J. Mol. Sci. 2015;16:18328–18347. doi: 10.3390/ijms160818328. PubMed DOI PMC
Zhang W., Zhu Z., Zhang H., Qiu Y. Selective removal of the genotoxic compound 2-aminopyridine in water using molecularly imprinted polymers based on magnetic chitosan and beta-cyclodextrin. Int. J. Environ. Res. Public Health. 2017;14:991. doi: 10.3390/ijerph14090991. PubMed DOI PMC
Liu Y., Liu Z., Hu X., Xu Z. Beta-cyclodextrin molecularly imprinted solid-phase microextraction coatings for selective recognition of polychlorophenols in water samples. Anal. Bioanal. Chem. 2018;410:509–519. doi: 10.1007/s00216-017-0746-3. PubMed DOI
Fan H., Wang J., Meng Q., Tian Y., Xu X., Jin Z. Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-alpha-d-maltosyl-beta-cyclodextrin. J. Sep. Sci. 2017;40:4653–4660. doi: 10.1002/jssc.201700808. PubMed DOI
Liu G., Li T., Yang X., She Y., Wang M., Wang J., Zhang M., Wang S., Jin F., Jin M., et al. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on fe3o4-chitosan. Carbohydr. Polym. 2016;137:75–81. doi: 10.1016/j.carbpol.2015.10.062. PubMed DOI
Ahmed M.A., Abdelbar N.M., Mohamed A.A. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of rose bengal from wastewater. Int. J. Biol. Macromol. 2018;107:1046–1053. doi: 10.1016/j.ijbiomac.2017.09.082. PubMed DOI
Kumar Singh A., Singh M. QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films. Biosens. Bioelectron. 2015;74:711–717. doi: 10.1016/j.bios.2015.07.027. PubMed DOI
Gupta N., Shah K., Singh M. An epitope-imprinted piezoelectric diagnostic tool for neisseria meningitidis detection. J. Mol. Recognit. 2016;29:572–579. doi: 10.1002/jmr.2557. PubMed DOI
Singh A.K., Singh M. Electrochemical and piezoelectric monitoring of taurine via electropolymerized molecularly imprinted films. J. Mol. Recognit. 2017;30:13. doi: 10.1002/jmr.2652. PubMed DOI
Ebarvia B.S., Ubando I.E., Sevilla F.B., III Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta. 2015;144:1260–1265. doi: 10.1016/j.talanta.2015.08.001. PubMed DOI
Ebarvia B.S., Binag C.A., Sevilla F. Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer. Anal. Bioanal. Chem. 2004;378:1331–1337. doi: 10.1007/s00216-003-2433-9. PubMed DOI
Bartold K., Pietrzyk-Le A., Huynh T.P., Iskierko Z., Sosnowska M., Noworyta K., Lisowski W., Sannicolo F., Cauteruccio S., Licandro E., et al. Programmed transfer of sequence information into a molecularly imprinted polymer for hexakis(2,2′-bithien-5-yl) DNA analogue formation toward single-nucleotide-polymorphism detection. ACS Appl. Mater. Interfaces. 2017;9:3948–3958. doi: 10.1021/acsami.6b14340. PubMed DOI
Sivashankar S., Sapsanis C., Agambayev S., Buttner U., Salama K.N. Label-free detection of sex determining region y (sry) via capacitive biosensor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016;10:7591690. PubMed
de las Heras A., Carreno C.A., de Lorenzo V. Stable implantation of orthogonal sensor circuits in gram-negative bacteria for environmental release. Environ. Microbiol. 2008;10:3305–3316. doi: 10.1111/j.1462-2920.2008.01722.x. PubMed DOI
Bui V.N., Nguyen T.T., Mai C.T., Bettarel Y., Hoang T.Y., Trinh T.T., Truong N.H., Chu H.H., Nguyen V.T., Nguyen H.D., et al. Procarcinogens—Determination and evaluation by yeast-based biosensor transformed with plasmids incorporating rad54 reporter construct and cytochrome p450 genes. PLoS ONE. 2016;11:e0168721. doi: 10.1371/journal.pone.0168721. PubMed DOI PMC
Lv J., Zhao S., Wu S., Wang Z. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-lr sensing. Biosens. Bioelectron. 2017;90:203–209. doi: 10.1016/j.bios.2016.09.110. PubMed DOI
Karimi A., Hayat A., Andreescu S. Biomolecular detection at ssdna-conjugated nanoparticles by nano-impact electrochemistry. Biosens. Bioelectron. 2017;87:501–507. doi: 10.1016/j.bios.2016.08.108. PubMed DOI
Kirimli C.E., Shih W.H., Shih W.Y. DNA hybridization detection with 100 zm sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm. Analyst. 2014;139:2754–2763. doi: 10.1039/C4AN00215F. PubMed DOI PMC
Datta M., Desai D., Kumar A. Gene specific DNA sensors for diagnosis of pathogenic infections. Indian J. Microbiol. 2017;57:139–147. doi: 10.1007/s12088-017-0650-8. PubMed DOI PMC
Lian Y., He F., Wang H., Tong F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens. Bioelectron. 2015;65:314–319. doi: 10.1016/j.bios.2014.10.017. PubMed DOI
Rijal K., Mutharasan R. A method for DNA-based detection of E. coli O157:H7 in a proteinous background using piezoelectric-excited cantilever sensors. Analyst. 2013;138:2943–2950. doi: 10.1039/c3an36814a. PubMed DOI
Chen S.H., Chuang Y.C., Lu Y.C., Lin H.C., Yang Y.L., Lin C.S. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology. 2009;20:215501. doi: 10.1088/0957-4484/20/21/215501. PubMed DOI
Pang L., Li J., Jiang J., Shen G., Yu R. DNA point mutation detection based on DNA ligase reaction and nano-au amplification: A piezoelectric approach. Anal. Biochem. 2006;358:99–103. doi: 10.1016/j.ab.2006.06.038. PubMed DOI
Ye M., Zhang Y., Li H., Tan P., Tang H., Yao S. A novel method for the detection of point mutation in DNA using single-base-coded cds nanoprobes. Biosens. Bioelectron. 2009;24:2339–2345. doi: 10.1016/j.bios.2008.12.002. PubMed DOI
Gabius H.J., Siebert H.C., Andre S., Jimenez-Barbero J., Rudiger H. Chemical biology of the sugar code. ChemBioChem. 2004;5:740–764. doi: 10.1002/cbic.200300753. PubMed DOI
Zeng X.Q., Qu K., Rehman A. Glycosylated conductive polymer: A multimodal biointerface for studying carbohydrate-protein interactions. Acc. Chem. Res. 2016;49:1624–1633. doi: 10.1021/acs.accounts.6b00181. PubMed DOI
Pesquero N.C., Carvalho F.C., Faria R.C., Roque-Barreira M.C., Bueno P.R. Artinm binding effinities and kinetic interaction with leukemia cells: A quartz crystal microbalance bioelectroanalysis on the cytotoxic effect. Electroanalysis. 2017;29:1554–1558. doi: 10.1002/elan.201700093. DOI
Pizzoni D., Mascini M., Lanzone V., Del Carlo M., Di Natale C., Compagnone D. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach. Biosens. Bioelectron. 2014;52:247–254. doi: 10.1016/j.bios.2013.08.044. PubMed DOI
Mascini M., Pizzoni D., Perez G., Chiarappa E., Di Natale C., Pittia P., Compagnone D. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements. Biosens. Bioelectron. 2017;93:161–169. doi: 10.1016/j.bios.2016.09.028. PubMed DOI
Compagnone D., Fusella G.C., Del Carlo M., Pittia P., Martinelli E., Tortora L., Paolesse R., Di Natale C. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas. Biosens. Bioelectron. 2013;42:618–625. doi: 10.1016/j.bios.2012.10.096. PubMed DOI
Li C., Chen X., Zhang F.Y., He X.X., Fang G.Z., Liu J.F., Wang S. Design of cyclic peptide based glucose receptors and their application in glucose sensing. Anal. Chem. 2017;89:10431–10438. doi: 10.1021/acs.analchem.7b02430. PubMed DOI
Capobianco J.A., Shih W.Y., Adams G.P., Shih W.H. Label-free growth receptor-2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens. Actuators B Chem. 2011;160:349–356. doi: 10.1016/j.snb.2011.07.060. PubMed DOI PMC
Ben Yahia M., Hsan L.B.H., Knani S., Nasri H., Ben Lamine A. Modeling of adsorption isotherms of zinc nitrate on a thin layer of porphyrin. J. Mol. Liq. 2016;222:576–585. doi: 10.1016/j.molliq.2016.07.011. DOI
Immunoassay of Glomalin by Quartz Crystal Microbalance Biosensor Containing Iron Oxide Nanoparticles
Current Trends in the Biosensors for Biological Warfare Agents Assay
Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review