Current Trends in the Biosensors for Biological Warfare Agents Assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31323857
PubMed Central
PMC6678440
DOI
10.3390/ma12142303
PII: ma12142303
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus anthracis, anthrax, bioassay, biological warfare agent, biological weapon, biosensor, colorimetry, electrochemistry, hand held assay, hemorrhagic fever, tularemia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biosensors are analytical devices combining a physical sensor with a part of biological origin providing sensitivity and selectivity toward analyte. Biological warfare agents are infectious microorganisms or toxins with the capability to harm or kill humans. They can be produced and spread by a military or misused by a terrorist group. For example, Bacillus anthracis, Francisella tularensis, Brucella sp., Yersinia pestis, staphylococcal enterotoxin B, botulinum toxin and orthopoxviruses are typical biological warfare agents. Biosensors for biological warfare agents serve as simple but reliable analytical tools for the both field and laboratory assay. There are examples of commercially available biosensors, but research and development of new types continue and their application in praxis can be expected in the future. This review summarizes the facts and role of biosensors in the biological warfare agents' assay, and shows current commercially available devices and trends in research of the news. Survey of actual literature is provided.
Zobrazit více v PubMed
Janik E., Ceremuga M., Saluk-Bijak J., Bijak M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019;20:1181. doi: 10.3390/ijms20051181. PubMed DOI PMC
Anderson P.D. Bioterrorism: Toxins as weapons. J. Pharm. Pract. 2012;25:121–129. doi: 10.1177/0897190012442351. PubMed DOI
Beckham T. Introduction—Biological threat reduction. Rev. Sci. Tech. 2017;36:403–413. doi: 10.20506/rst.36.2.2661. PubMed DOI
Clarke S.C. Bacteria as potential tools in bioterrorism, with an emphasis on bacterial toxins. Br. J. Biomed. Sci. 2005;62:40–46. doi: 10.1080/09674845.2005.11732685. PubMed DOI
Kolesnikov A.V., Ryabko A.K., Shemyakin I.G., Kozyr A.V. Development of specific therapy to category a toxic infections. Vestn. Ross Akad. Med. Nauk. 2015;4:428–434. PubMed
Pavlovich M.J., Musselman B., Hall A.B. Direct analysis in real time-mass spectrometry (dart-ms) in forensic and security applications. Mass Spectrom. Rev. 2018;37:171–187. doi: 10.1002/mas.21509. PubMed DOI
Bozza W.P., Tolleson W.H., Rivera Rosado L.A., Zhang B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015;33:117–123. doi: 10.1016/j.biotechadv.2014.11.012. PubMed DOI
Duriez E., Armengaud J., Fenaille F., Ezan E. Mass spectrometry for the detection of bioterrorism agents: From environmental to clinical applications. J. Mass Spectrom. 2016;51:183–199. doi: 10.1002/jms.3747. PubMed DOI
Singh A.K., Stanker L.H., Sharma S.K. Botulinum neurotoxin: Where are we with detection technologies? Crit. Rev. Microbiol. 2013;39:43–56. doi: 10.3109/1040841X.2012.691457. PubMed DOI
Cottingham K. Ms on the bioterror front lines. Anal. Chem. 2006;78:18–23. doi: 10.1021/ac069343r. PubMed DOI
Lebedev A.T. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents. Toxicol. Appl. Pharmacol. 2005;207:451–458. doi: 10.1016/j.taap.2005.02.040. PubMed DOI
Ler S.G., Lee F.K., Gopalakrishnakone P. Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin b and t-2 toxin. J. Chromatogr. A. 2006;1133:1–12. doi: 10.1016/j.chroma.2006.08.078. PubMed DOI
Kientz C.E. Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: State of the art and future prospects. J. Chromatogr. A. 1998;814:1–23. doi: 10.1016/S0021-9673(98)00338-0. PubMed DOI
D’Agostino P.A., Hancock J.R., Chenier C.L. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. Eur. J. Mass Spectrom. 2003;9:609–618. doi: 10.1255/ejms.583. PubMed DOI
Saikaly P.E., Barlaz M.A., de los Reyes F.L. Development of quantitative real-time pcr assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl. Environ. Microbiol. 2007;73:6557–6565. doi: 10.1128/AEM.00779-07. PubMed DOI PMC
Minogue T.D., Rachwal P.A., Hall A.T., Koehler J.W., Weller S.A. Cross-institute evaluations of inhibitor-resistant pcr reagents for direct testing of aerosol and blood samples containing biological warfare agent DNA. Appl. Environ. Microbiol. 2014;80:1322–1329. doi: 10.1128/AEM.03478-13. PubMed DOI PMC
Pal V., Singh S., Tiwari A.K., Jaiswal Y.K., Rai G.P. Development of a polymerase chain reaction assay for detection of burkholderia mallei, a potent biological warfare agent. Def. Sci. J. 2016;66:458–463. doi: 10.14429/dsj.66.10698. DOI
Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015;69:4–16. doi: 10.2478/s11696-014-0542-x. DOI
Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11:448. doi: 10.3390/ma11030448. PubMed DOI PMC
Pohanka M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci. 2017;12:496–506. doi: 10.20964/2017.01.44. DOI
Bochenkov V.E., Shabatina T.I. Chiral plasmonic biosensors. Biosensors. 2018;8:120. doi: 10.3390/bios8040120. PubMed DOI PMC
Eivazzadeh-Keihan R., Pashazadeh-Panahi P., Mahmoudi T., Chenab K.K., Baradaran B., Hashemzaei M., Radinekiyan F., Mokhtarzadeh A., Maleki A. Dengue virus: A review on advances in detection and trends—From conventional methods to novel biosensors. Mikrochim. Acta. 2019;186:329. doi: 10.1007/s00604-019-3420-y. PubMed DOI
Nguyen H.H., Lee S.H., Lee U.J., Fermin C.D., Kim M. Immobilized enzymes in biosensor applications. Materials. 2019;12:121. doi: 10.3390/ma12010121. PubMed DOI PMC
Gooding J.J. Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Anal. Chim. Acta. 2006;57:185–193. doi: 10.1016/j.aca.2005.12.020. DOI
Pohanka M., Skladal P., Kroca M. Biosensors for biological warfare agent detection. Def. Sci. J. 2007;57:185–193. doi: 10.14429/dsj.57.1760. DOI
Kumar H., Rani R. Development of biosensors for the detection of biological warfare agents: Its issues and challenges. Sci. Prog. 2013;96:294–308. doi: 10.3184/003685013X13777066241280. PubMed DOI PMC
Zhou H., Liu J., Xu J.J., Zhang S.S., Chen H.Y. Optical nano-biosensing interface via nucleic acid amplification strategy: Construction and application. Chem. Soc. Rev. 2018;47:1996–2019. doi: 10.1039/C7CS00573C. PubMed DOI
Li Z., Zhang W., Xing F. Graphene optical biosensors. Int. J. Mol. Sci. 2019;20:2461. doi: 10.3390/ijms20102461. PubMed DOI PMC
Mowbray S.E., Amiri A.M. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics. 2019;9:23. doi: 10.3390/diagnostics9010023. PubMed DOI PMC
Pospisilova M., Kuncova G., Trogl J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors. 2015;15:25208–25259. doi: 10.3390/s151025208. PubMed DOI PMC
Benito-Pena E., Valdes M.G., Glahn-Martinez B., Moreno-Bondi M.C. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal. Chim. Acta. 2016;943:17–40. doi: 10.1016/j.aca.2016.08.049. PubMed DOI PMC
Liang G., Luo Z., Liu K., Wang Y., Dai J., Duan Y. Fiber optic surface plasmon resonance-based biosensor technique: Fabrication, advancement, and application. Crit. Rev. Anal. Chem. 2016;46:213–223. doi: 10.1080/10408347.2015.1045119. PubMed DOI
Kim J., Campbell A.S., de Avila B.E., Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019;37:389–406. doi: 10.1038/s41587-019-0045-y. PubMed DOI PMC
Steglich P., Hulsemann M., Dietzel B., Mai A. Optical biosensors based on silicon-on-insulator ring resonators: A review. Molecules. 2019;24:519. doi: 10.3390/molecules24030519. PubMed DOI PMC
Morales-Narvaez E., Merkoci A. Graphene oxide as an optical biosensing platform: A progress report. Adv. Mater. 2019;31:1805043. doi: 10.1002/adma.201805043. PubMed DOI
Nawrot W., Drzozga K., Baluta S., Cabaj J., Malecha K. A fluorescent biosensors for detection vital body fluids’ agents. Sensors. 2018;18:2357. doi: 10.3390/s18082357. PubMed DOI PMC
Pires N.M., Dong T., Hanke U., Hoivik N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14:15458–15479. doi: 10.3390/s140815458. PubMed DOI PMC
Paiva J.S., Jorge P.A.S., Rosa C.C., Cunha J.P.S. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim. Biophys. Acta Gen. Subj. 2018;1862:1209–1246. doi: 10.1016/j.bbagen.2018.02.008. PubMed DOI
Donaldson K.A., Kramer M.F., Lim D.V. A rapid detection method for vaccinia virus, the surrogate for smallpox virus. Biosen. Bioelectron. 2004;20:322–327. doi: 10.1016/j.bios.2004.01.029. PubMed DOI PMC
Nath N., Eldefrawi M., Wright J., Darwin D., Huestis M. A rapid reusable fiber optic biosensor for detecting cocaine metabolites in urine. J. Anal. Toxicol. 1999;23:460–467. doi: 10.1093/jat/23.6.460. PubMed DOI
Narang U., Anderson G.P., Ligler F.S., Burans J. Fiber optic-based biosensor for ricin. Biosens. Bioelectron. 1997;12:937–945. doi: 10.1016/S0956-5663(97)00027-4. PubMed DOI
Cao L.K., Anderson G.P., Ligler F.S., Ezzell J. Detection of yersinia pestis fraction 1 antigen with a fiber optic biosensor. J. Clin. Microbiol. 1995;33:336–341. PubMed PMC
DeMarco D.R., Saaski E.W., McCrae D.A., Lim D.V. Rapid detection of escherichia coli o157:H7 in ground beef using a fiber-optic biosensor. J. Food Prot. 1999;62:711–716. doi: 10.4315/0362-028X-62.7.711. PubMed DOI
Tempelman L.A., King K.D., Anderson G.P., Ligler F.S. Quantitating staphylococcal enterotoxin b in diverse media using a portable fiber-optic biosensor. Anal. Biochem. 1996;233:50–57. doi: 10.1006/abio.1996.0006. PubMed DOI
Anderson G.P., King K.D., Gaffney K.L., Johnson L.H. Multi-analyte interrogation using the fiber optic biosensor. Biosens. Bioelectron. 2000;14:771–777. doi: 10.1016/S0956-5663(99)00053-6. PubMed DOI
Pohanka M. Quantum dots in the therapy: Current trends and perspectives. Mini Rev. Med. Chem. 2017;17:650–656. doi: 10.2174/1389557517666170120153342. PubMed DOI
Girigoswami K., Akhtar N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 2019;10:1–17.
Ge S.Y., He J.B., Ma C.X., Liu J.Y., Xi F.N., Dong X.P. One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta. 2019;199:581–589. doi: 10.1016/j.talanta.2019.02.098. PubMed DOI
Alonso-Lomillo M.A., Dominiguez-Renedo O., MArcos-Martinez M.J. Screen-printed biosensors in microbiology; A review. Talanta. 2010;82:1629–1636. doi: 10.1016/j.talanta.2010.08.033. PubMed DOI
Pohanka M., Zakova J., Sedlacek I. Digital camera-based lipase biosensor for the determination of paraoxon. Sens. Actuator B Chem. 2018;273:610–615. doi: 10.1016/j.snb.2018.06.084. DOI
Pohanka M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 2017;71:1553–1561. doi: 10.1007/s11696-017-0166-z. DOI
Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15:13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC
Kilic V., Alankus G., Horzum N., Mutlu A.Y., Bayram A., Solmaz M.E. Single-image-referenced colorimetric water quality detection using a smartphone. ACS Omega. 2018;3:5531–5536. doi: 10.1021/acsomega.8b00625. PubMed DOI PMC
Moonrungsee N., Peamaroon N., Boonmee A., Suwancharoen S., Jakmunee J. Evaluation of tyrosinase inhibitory activity in salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chem. Pap. 2018;72:2729–2736. doi: 10.1007/s11696-018-0528-1. DOI
Monogarova O.V., Oskolok K.V., Apyari V.V. Colorimetry in chemical analysis. J. Anal. Chem. 2018;73:1076–1084. doi: 10.1134/S1061934818110060. DOI
Puangpila C., Jakmunee J., Pencharee S., Pensrisirikul W. Mobile-phone-based colourimetric analysis for determining nitrite content in water. Environ. Chem. 2018;15:403–410. doi: 10.1071/EN18072. DOI
Rong M.C., Liang Y.C., Zhao D.L., Chen B.J., Pan C., Deng X.Z., Chen Y.B., He J. A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sens. Actuator B Chem. 2018;265:498–505. doi: 10.1016/j.snb.2018.03.094. DOI
Zhang B.L., Dallo S., Peterson R., Hussain S., Tao W.T., Ye J.Y. Detection of anthrax lef with DNA-based photonic crystal sensors. J. Biomed. Opt. 2011;16:127006. doi: 10.1117/1.3662460. PubMed DOI
Cooper K.L., Bandara A.B., Wang Y., Wang A., Inzana T.J. Photonic biosensor assays to detect and distinguish subspecies of francisella tularensis. Sensors. 2011;11:3004–3019. doi: 10.3390/s110303004. PubMed DOI PMC
Mechaly A., Cohen H., Cohen O., Mazor O. A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents. Anal. Biochem. 2016;506:22–27. doi: 10.1016/j.ab.2016.04.018. PubMed DOI
Bhatta D., Michel A.A., Villalba M.M., Emmerson G.D., Sparrow I.J.G., Perkins E.A., McDonnell M.B., Ely R.W., Cartwright G.A. Optical microchip array biosensor for multiplexed detection of bio-hazardous agents. Biosens. Bioelectron. 2011;30:78–86. doi: 10.1016/j.bios.2011.08.031. PubMed DOI
Leveque C., Ferracci G., Maulet Y., Mazuet C., Popoff M.R., Blanchard M.P., Seagar M., El Far O. An optical biosensor assay for rapid dual detection of botulinum neurotoxins a and e. Sci. Rep. 2015;5:17953. doi: 10.1038/srep17953. PubMed DOI PMC
Shi J.Y., Guo J.B., Bai G.X., Chan C.Y., Liu X., Ye W.W., Hao J.H., Chen S., Yang M. A graphene oxide based fluorescence resonance energy transfer (fret) biosensor for ultrasensitive detection of botulinum neurotoxin a (bont/a) enzymatic activity. Biosens. Bioelectron. 2015;65:238–244. doi: 10.1016/j.bios.2014.10.050. PubMed DOI
Balsam J., Ossandon M., Kostov Y., Bruck H.A., Rasooly A. Lensless ccd-based fluorometer using a micromachined optical soller collimator. Lab Chip. 2011;11:941–949. doi: 10.1039/c0lc00431f. PubMed DOI
Blair E.O., Corrigan D.K. A review of microfabricated electrochemical biosensors for DNA detection. Biosen. Bioelectron. 2019;134:57–67. doi: 10.1016/j.bios.2019.03.055. PubMed DOI
Lee J.H., Park S.J., Choi J.W. Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials. 2019;9:297. doi: 10.3390/nano9020297. PubMed DOI PMC
Cinti S. Novel paper-based electroanalytical tools for food surveillance. Anal. Bioanal. Chem. 2019;411:4303–4311. doi: 10.1007/s00216-019-01640-5. PubMed DOI
Pohanka M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules. 2019;24:616. doi: 10.3390/molecules24030616. PubMed DOI PMC
Asif M., Aziz A., Azeem M., Wang Z., Ashraf G., Xiao F., Chen X., Liu H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci. 2018;262:21–38. doi: 10.1016/j.cis.2018.11.001. PubMed DOI
Zhou Y., Fang Y., Ramasamy R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors. 2019;19:392. doi: 10.3390/s19020392. PubMed DOI PMC
Shah J., Wilkins E. Electrochemical biosensors for detection of biological warfare agents. Electroanalysis. 2003;15:157–167. doi: 10.1002/elan.200390019. DOI
Moreira F.T.C., Ferreira M., Puga J.R.T., Sales M.G.F. Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens. Actuator B Chem. 2016;223:927–935. doi: 10.1016/j.snb.2015.09.157. PubMed DOI PMC
Ricci F., Adornetto G., Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta. 2012;84:74–83. doi: 10.1016/j.electacta.2012.06.033. DOI
Pohanka M., Skladal P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 2008;6:57–64. doi: 10.32725/jab.2008.008. DOI
Pohanka M. Three-dimensional printing in analytical chemistry: Principles and applications. Anal. Lett. 2016;49:2865–2882. doi: 10.1080/00032719.2016.1166370. DOI
Settrington E.B., Alocilja E.C. Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors. 2012;2:15–31. doi: 10.3390/bios2010015. PubMed DOI PMC
Mazzaracchio V., Neagu D., Porchetta A., Marcoccio E., Pomponi A., Faggioni G., D’Amore N., Notargiacomo A., Pea M., Moscone D., et al. A label-free impedimetric aptasensor for the detection of bacillus anthracis spore simulant. Biosens. Bioelectron. 2019;126:640–646. doi: 10.1016/j.bios.2018.11.017. PubMed DOI
Raveendran M., Andrade A.F.B., Gonzalez-Rodriguez J. Selective and sensitive electrochemical DNA biosensor for the detection of bacillus anthracis. Int. J. Electrochem. Sci. 2016;11:763–776.
Ziolkowski R., Oszwaldowski S., Zacharczuk K., Zasada A.A., Malinowska E. Electrochemical detection of bacillus anthracis protective antigen gene using DNA biosensor based on stem-loop probe. J. Electrochem. Soc. 2018;165:B187–B195. doi: 10.1149/2.0551805jes. DOI
Lard M., Linke H., Prinz C.N. Biosensing using arrays of vertical semiconductor nanowires: Mechanosensing and biomarker detection. Nanotechnology. 2019;30:214003. doi: 10.1088/1361-6528/ab0326. PubMed DOI
Molaei M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta. 2019;196:456–478. doi: 10.1016/j.talanta.2018.12.042. PubMed DOI
Luan E., Shoman H., Ratner D.M., Cheung K.C., Chrostowski L. Silicon photonic biosensors using label-free detection. Sensors. 2018;18:3519. doi: 10.3390/s18103519. PubMed DOI PMC
Piro B., Mattana G., Reisberg S. Transistors for chemical monitoring of living cells. Biosensors. 2018;8:65. doi: 10.3390/bios8030065. PubMed DOI PMC
Tran D.P., Pham T.T.T., Wolfrum B., Offenhausser A., Thierry B. Cmos-compatible silicon nanowire field-effect transistor biosensor: Technology development toward commercialization. Materials. 2018;11:785. doi: 10.3390/ma11050785. PubMed DOI PMC
Zang Y., Fan J., Ju Y., Xue H., Pang H. Current advances in semiconductor nanomaterial-based photoelectrochemical biosensing. Chemistry. 2018;24:14010–14027. doi: 10.1002/chem.201801358. PubMed DOI
Choi K., Seo W., Cha S., Choi J. Evaluation of two types of biosensors for immunoassay of botulinum toxin. J. Biochem. Mol. Biol. 1998;31:101–105.
Cunningha J.C., Scida K., Kogan M.R., Wang B., Ellington A.D., Crooks R.M. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip. 2015;15:3707–3715. doi: 10.1039/C5LC00731C. PubMed DOI
Ngeh-Ngwainbi J., Suleiman A.A., Guilbault G.G. Piezoelectric crystal biosensors. Biosens. Bioelectron. 1990;5:13–26. doi: 10.1016/0956-5663(90)80023-7. PubMed DOI
Wang Z.L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012;24:4632–4646. doi: 10.1002/adma.201104365. PubMed DOI
Chorsi M.T., Curry E.J., Chorsi H.T., Das R., Baroody J., Purohit P.K., Ilies H., Nguyen T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019;31:1802084. doi: 10.1002/adma.201802084. PubMed DOI
Bragazzi N.L., Amicizia D., Panatto D., Tramalloni D., Valle I., Gasparini R. Quartz-crystal microbalance (qcm) for public health: An overview of its applications. Adv. Protein Chem. Struct. Biol. 2015;101:149–211. PubMed
Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors. 2014;4:301–317. doi: 10.3390/bios4030301. PubMed DOI PMC
Becker B., Cooper M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011;24:754–787. doi: 10.1002/jmr.1117. PubMed DOI
Pohanka M. Sensors based on molecularly imprinted polymers. Int. J. Electrochem. Sci. 2017;12:8082–8094. doi: 10.20964/2017.09.67. DOI
Poitras C., Tufenkji N. A qcm-d-based biosensor for E. coli o157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosens. Bioelectron. 2009;24:2137–2142. doi: 10.1016/j.bios.2008.11.016. PubMed DOI
Hao R.Z., Wang D.B., Zhang X.E., Zuo G.M., Wei H.P., Yang R.F., Zhang Z.P., Cheng Z.X., Guo Y.C., Cui Z.Q., et al. Rapid detection of bacillus anthracis using monoclonal antibody functionalized qcm sensor. Biosens. Bioelectron. 2009;24:1330–1335. doi: 10.1016/j.bios.2008.07.071. PubMed DOI
Pohanka M., Pavlis O., Skladal P. Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors. 2007;7:341–353. doi: 10.3390/s7030341. DOI
Pohanka M., Pavlis O., Skladal P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta. 2007;71:981–985. doi: 10.1016/j.talanta.2006.05.074. PubMed DOI
Pohanka M., Treml F., Hubalek M., Band’ouchova H., Beklova M., Pikula J. Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected european brown hares (Lepus europaeus) Sensors. 2007;7:2825–2834. doi: 10.3390/s7112825. PubMed DOI PMC
Ghosal K., Ghosh A. Carbon dots: The next generation platform for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;96:887–903. doi: 10.1016/j.msec.2018.11.060. PubMed DOI
Singh R.D., Shandilya R., Bhargava A., Kumar R., Tiwari R., Chaudhury K., Srivastava R.K., Goryacheva I.Y., Mishra P.K. Quantum dot based nano-biosensors for detection of circulating cell free mirnas in lung carcinogenesis: From biology to clinical translation. Front. Genet. 2018;9:616. doi: 10.3389/fgene.2018.00616. PubMed DOI PMC
Xianyu Y.L., Wang Q.L., Chen Y.P. Magnetic particles-enabled biosensors for point-of-care testing. Trac-Trends Anal. Chem. 2018;106:213–224. doi: 10.1016/j.trac.2018.07.010. DOI
Chen Y.T., Kolhatkar A.G., Zenasni O., Xu S., Lee T.R. Biosensing using magnetic particle detection techniques. Sensors. 2017;17:2300. doi: 10.3390/s17102300. PubMed DOI PMC
Chinnadayyala S.R., Park J., Le H.T.N., Santhosh M., Kadam A.N., Cho S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron. 2019;126:68–81. doi: 10.1016/j.bios.2018.10.038. PubMed DOI
Bakirhan N.K., Ozcelikay G., Ozkan S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal. 2018;159:406–424. doi: 10.1016/j.jpba.2018.07.021. PubMed DOI
Qing Z.H., Bai A.L., Xing S.H., Zou Z., He X.X., Wang K.M., Yang R.H. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens. Bioelectron. 2019;137:96–109. doi: 10.1016/j.bios.2019.05.014. PubMed DOI
Stine K.J. Biosensor applications of electrodeposited nanostructures. Appl. Sci. 2019;9:797. doi: 10.3390/app9040797. DOI
Yola M.L. Development of novel nanocomposites based on graphene/graphene oxide and electrochemical sensor applications. Curr. Anal. Chem. 2019;15:159–165. doi: 10.2174/1573411014666180320111246. DOI
Kizling M., Dzwonek M., Wieckowska A., Bilewicz R. Gold nanoparticles in bioelectrocatalysis—The role of nanoparticle size. Curr. Opin. Electrochem. 2018;12:113–120. doi: 10.1016/j.coelec.2018.05.021. DOI
Tan H.X., Ma L., Guo T., Zhou H.Y., Chen L., Zhang Y.H., Dai H.J., Yu Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin b-1. Anal. Chim. Acta. 2019;1068:87–95. doi: 10.1016/j.aca.2019.04.014. PubMed DOI
Fothergill S.M., Joyce C., Xie F. Metal enhanced fluorescence biosensing: From ultra-violet towards second near-infrared window. Nanoscale. 2018;10:20914–20929. doi: 10.1039/C8NR06156D. PubMed DOI
Hassanpour S., Baradaran B., de la Guardia M., Baghbanzadeh A., Mosafer J., Hejazi M., Mokhtarzadeh A., Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: A review on recent advancements. Microchim. Acta. 2018;185:568. doi: 10.1007/s00604-018-3088-8. PubMed DOI
Mehmood S., Khan A.Z., Bilal M., Sohail A., Iqbal H.M.N. Aptamer-based biosensors: A novel toolkit for early diagnosis of cancer. Mater. Today Chem. 2019;12:353–360. doi: 10.1016/j.mtchem.2019.04.005. DOI
Lorenzo-Gomez R., Miranda-Castro R., de-los-Santos-Alvarez N., Lobo-Castanon M.J. Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: New tools for cancer diagnosis. Curr. Opin. Electrochem. 2019;14:32–43. doi: 10.1016/j.coelec.2018.11.008. DOI
Zhang Y., Lai B.S., Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24:941. doi: 10.3390/molecules24050941. PubMed DOI PMC
Hanif A., Farooq R., Rehman M.U., Khan R., Majid S., Ganaie M.A. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm. J. 2019;27:312–319. doi: 10.1016/j.jsps.2018.11.013. PubMed DOI PMC