Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TH03030336
TACR
PubMed
30744203
PubMed Central
PMC6384989
DOI
10.3390/molecules24030616
PII: molecules24030616
Knihovny.cz E-zdroje
- Klíčová slova
- amperometry, bioassay, biorecognition, biosensor, catalysis, enzyme, ester, lipase, nanoparticle, nanostructure, potentiometry, voltammetry,
- MeSH
- aktivace enzymů MeSH
- biosenzitivní techniky metody normy MeSH
- biotest metody normy MeSH
- elektrochemické techniky MeSH
- hydrolýza MeSH
- katalýza MeSH
- lipasa chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lipasa MeSH
Lipases are enzymes responsible for the conversion of triglycerides and other esterified substrates, they are involved in the basic metabolism of a wide number of organisms, from a simple microorganism and to mammals. They also have broad applicability in many fields from which industrial biotechnology, the production of cleaning agents, and pharmacy are the most important. The use of lipases in analytical chemistry where it can serve as a part of biosensors or bioassays is an application of growing interest and has become another important use. This review is focused on the description of lipases chemistry, their current applications and the methods for their assay measurement. Examples of bioassays and biosensors, including their physical and chemical principles, performance for specific substrates, and discussion of their relevance, are given in this work.
Zobrazit více v PubMed
Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013;46:1849–1868. doi: 10.1080/00032719.2013.780240. DOI
Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11:448. doi: 10.3390/ma11030448. PubMed DOI PMC
Priyanka P., Kinsella G., Henehan G.T., Ryan B.J. Isolation, purification and characterization of a novel solvent stable lipase from pseudomonas reinekei. Protein Expr. Purif. 2019;153:121–130. doi: 10.1016/j.pep.2018.08.007. PubMed DOI
Mehta A., Grover C., Gupta R. Purification of lipase from aspergillus fumigatus using octyl sepharose column chromatography and its characterization. J. Basic Microbiol. 2018;58:857–866. doi: 10.1002/jobm.201800129. PubMed DOI
Zhou Y.J., Hu C.L., Wang N., Zhang W.W., Yu X.Q. Purification of porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and potassium phosphate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013;926:77–82. doi: 10.1016/j.jchromb.2013.03.005. PubMed DOI
Herrera-Lopez E.J. Lipase and phospholipase biosensors: A review. Methods Mol. Biol. 2012;861:525–543. PubMed
Sandoval G., Herrera-Lopez E.J. Lipase, phospholipase, and esterase biosensors (review) Methods Mol. Biol. 2018;1835:391–425. PubMed
Nguyen H.H., Lee S.H., Lee U.J., Fermin C.D., Kim M. Immobilized enzymes in biosensor applications. Materials. 2019;12:121. doi: 10.3390/ma12010121. PubMed DOI PMC
Akoh C.C., Lee G.C., Liaw Y.C., Huang T.H., Shaw J.F. Gdsl family of serine esterases/lipases. Prog. Lipid Res. 2004;43:534–552. doi: 10.1016/j.plipres.2004.09.002. PubMed DOI
Doolittle M.H., Peterfy M. Mechanisms of lipase maturation. Clin. Lipidol. 2010;5:71–85. doi: 10.2217/clp.09.84. PubMed DOI PMC
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008 - present) Expert Opin. Ther. Pat. 2012;22:871–886. doi: 10.1517/13543776.2012.701620. PubMed DOI
Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015;69:4–16. doi: 10.2478/s11696-014-0542-x. DOI
Wong H., Schotz M.C. The lipase gene family. J. Lipid Res. 2002;43:993–999. doi: 10.1194/jlr.R200007-JLR200. PubMed DOI
Holmes R.S., Vandeberg J.L., Cox L.A. Vertebrate hepatic lipase genes and proteins: A review supported by bioinformatic studies. Open Access Bioinformatics. 2011;22:85–95. doi: 10.2147/OAB.S18401. PubMed DOI PMC
Murthy V., Julien P., Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 1996;70:101–135. doi: 10.1016/0163-7258(96)00005-8. PubMed DOI
Patel R.N. Stereoselective biotransformations in synthesis of some pharmaceutical intermediates. Adv. Appl. Microbiol. 1997;43:91–140. PubMed
Yamamoto K., Ueno Y., Otsubo K., Kawakami K., Komatsu K. Production of s-(+)-ibuprofen from a nitrile compound by acinetobacter sp. Strain ak226. Appl. Environ. Microbiol. 1990;56:3125–3129. PubMed PMC
Matsumane H., Furui M., Shibatani T., Tosa T. Production of optically active 3-phenylglycidic acid ester by the lipase from serratia marcescens in a hollow-fiber membrane reactor. J. Ferment. Bioeng. 1994;78:59–63. doi: 10.1016/0922-338X(94)90179-1. DOI
Patel R.N., Banerjee A., Ko R.Y., Howell J.M., Li W.S., Comezoglu F.T. Enzymic preparation of (3r-cis)-3-acetyloxy-4-phenyl-2-azetidinone: A taxol side-chain synthon. Biotechnol. Appl. Biochem. 1994;20:23–33. PubMed
Acosta A., Filice M., Fernandez-Lorente G., Palomo J.M., Guisan J.M. Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized rhizomucor miehei lipase. Bioresour. Technol. 2011;102:507–512. doi: 10.1016/j.biortech.2010.08.095. PubMed DOI
Kaewprapan K., Wongkongkatep J., Panbangred W., Phinyocheep P., Marie E., Durand A., Inprakhon P. Lipase-catalyzed synthesis of hydrophobically modified dextrans: Activity and regioselectivity of lipase from candida rugosa. J. Biosci. Bioeng. 2011;112:124–129. doi: 10.1016/j.jbiosc.2011.04.004. PubMed DOI
Lianghua T., Liming X., Min S., Huaying G. Purification and application of a lipase from penicillium expansum ped-03. Appl. Biochem. Biotechnol. 2007;142:194–199. doi: 10.1007/s12010-007-0043-2. PubMed DOI
Athenstaedt K., Daum G. Tgl4p and tgl5p, two triacylglycerol lipases of the yeast saccharomyces cerevisiae are localized to lipid particles. J. Biol. Chem. 2005;280:37301–37309. doi: 10.1074/jbc.M507261200. PubMed DOI
Maruyama T., Nakajima M., Kondo H., Kawasaki K., Seki M., Goto M. Can lipases hydrolyze a peptide bond? Enzyme Microb. Technol. 2003;32:655–657. doi: 10.1016/S0141-0229(03)00053-X. DOI
Fernandez J., Mohedano A.F., Fernandez-Garcia E., Medina M., Nunez M. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, micrococcus sp. Inia 528. Int. Dairy J. 2004;14:135–142. doi: 10.1016/S0958-6946(03)00168-7. DOI
Arreguin-Espinosa R., Arreguin B., Gonzalez C. Purification and properties of a lipase from cephaloleia presignis (coleoptera, chrysomelidae) Biotechnol. Appl. Biochem. 2000;31:239–244. doi: 10.1042/BA19990088. PubMed DOI
Quiroga A.D., Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem. Pharmacol. 2018;155:233–241. doi: 10.1016/j.bcp.2018.07.005. PubMed DOI
Srivastava G., Apovian C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep. 2018;7:147–161. doi: 10.1007/s13679-018-0300-4. PubMed DOI
Bialecka-Florjanczyk E., Fabiszewska A.U., Krzyczkowska J., Kurylowicz A. Synthetic and natural lipase inhibitors. Mini Rev. Med. Chem. 2018;18:672–683. doi: 10.2174/1389557516666160630123356. PubMed DOI
Lunagariya N.A., Patel N.K., Jagtap S.C., Bhutani K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. Excli. J. 2014;13:897–921. PubMed PMC
Kumari A., Gupta R. Extracellular expression and characterization of thermostable lipases, lip8, lip14 and lip18, from yarrowia lipolytica. Biotechnol. Lett. 2012;34:1733–1739. doi: 10.1007/s10529-012-0958-8. PubMed DOI
Deb C., Daniel J., Sirakova T.D., Abomoelak B., Dubey V.S., Kolattukudy P.E. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in mycobacterium tuberculosis. J. Biol. Chem. 2006;281:3866–3875. doi: 10.1074/jbc.M505556200. PubMed DOI PMC
Nishio T., Chikano T., Kamimura M. Purification and some properties of lipase produced by pseudomonas fragi 22.39 b. Agric. Biol. Chem. 1987;51:181–186.
Zhao H., Zheng L., Wang X., Liu Y., Xu L., Yan Y. Cloning, expression and characterization of a new lipase from yarrowia lipolytica. Biotechnol. Lett. 2011;33:2445–2452. doi: 10.1007/s10529-011-0711-8. PubMed DOI
Wilcox M.D., Brownlee I.A., Richardson J.C., Dettmar P.W., Pearson J.P. The modulation of pancreatic lipase activity by alginates. Food Chem. 2014;146:479–484. doi: 10.1016/j.foodchem.2013.09.075. PubMed DOI PMC
Dutta S., Ray L. Production and characterization of an alkaline thermostable crude lipase from an isolated strain of bacillus cereus c(7) Appl. Biochem. Biotechnol. 2009;159:142–154. doi: 10.1007/s12010-009-8543-x. PubMed DOI
Muderhwa J.M., Ratomahenina R., Pina M., Graille J., Galzy P. Purification and properties of the lipases from rhodotorula pilimanae hedrick and burke. Appl. Microbiol. Biotechnol. 1986;23:348–354. doi: 10.1007/BF00257031. DOI
Edashige Y., Murakami N., Tsujita T. Inhibitory effect of pectin from the segment membrane of citrus fruits on lipase activity. J. Nutr. Sci. Vitaminol. 2008;54:409–415. doi: 10.3177/jnsv.54.409. PubMed DOI
Ebrahimpour A., Rahman R.N., Basri M., Salleh A.B. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from geobacillus sp. Strain arm. Bioresour. Technol. 2011;102:6972–6981. doi: 10.1016/j.biortech.2011.03.083. PubMed DOI
Rivera-Perez C., del Toro Mde L., Garcia-Carreno F. Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (litopenaeus vannamei) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011;158:99–105. doi: 10.1016/j.cbpb.2010.10.004. PubMed DOI
Salah R.B., Mosbah H., Fendri A., Gargouri A., Gargouri Y., Mejdoub H. Biochemical and molecular characterization of a lipase produced by rhizopus oryzae. FEMS Microbiol. Lett. 2006;260:241–248. doi: 10.1111/j.1574-6968.2006.00323.x. PubMed DOI
Sahebkar A., Simental-Mendia L.E., Reiner Z., Kovanen P.T., Simental-Mendia M., Bianconi V., Pirro M. Effect of orlistat on plasma lipids and body weight: A systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol. Res. 2017;122:53–65. doi: 10.1016/j.phrs.2017.05.022. PubMed DOI
Guerrand D. Lipases industrial applications: Focus on food and agroindustries. OCL. 2017;24:D403. doi: 10.1051/ocl/2017031. DOI
Hasan F., Shah A.A., Hameed A. Inducstrial applications of microbial lipases. Enzyme Microb. Technol. 2006;39:235–251. doi: 10.1016/j.enzmictec.2005.10.016. DOI
Andualeme B., Gessesse A. Microbial lipases and their industrial applications: Review. Biotechnology. 2012;11:100–118. doi: 10.3923/biotech.2012.100.118. DOI
Stoytcheva M., Montero G., Zlatev R., Leon J.A., Gochev V. Analytical methods for lipases activity determination: A review. Curr. Anal. Chem. 2012;8:400–407. doi: 10.2174/157341112801264879. DOI
Gopinath S.C., Anbu P., Lakshmipriya T., Hilda A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed. Res. Int. 2013;154549:24. doi: 10.1155/2013/154549. PubMed DOI PMC
Kumar D., Kumar L., Nagar S., Raina C., Parshad R., Gupta V.K. Screening, isolation and production of lipase/esterase producing bacillus sp. Strain dvl2 and its potential evaluation in esterification and resolution reactions. Arch. Appl. Sci. Res. 2012;4:1763–1770.
Plou F.J., Ferrer M., Nuero O.M., Calvo M.V., Alcalde M., Reyes F., Ballesteros A. Analysis of tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 1998;12:183–186. doi: 10.1023/A:1008809105270. DOI
Glogauer A., Martini V.P., Faoro H., Couto G.H., Muller-Santos M., Monteiro R.A., Mitchell D.A., de Souza E.M., Pedrosa F.O., Krieger N. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact. 2011;10:1475–2859. doi: 10.1186/1475-2859-10-54. PubMed DOI PMC
Walter G.L., McGraw P., Tvedten H.W. Serum lipase determination in the dog: A comparison of a titrimetric method with an automated kinetic method. Vet. Clin. Pathol. 1992;21:23–27. doi: 10.1111/j.1939-165X.1992.tb00578.x. PubMed DOI
Jensen R.G. Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids. 1983;18:650–657. doi: 10.1007/BF02534677. PubMed DOI
Kartal F., Kilinc A., Timur S. Lipase biosensor for tributyrin and pesticide detection. Int. J. Environ. Anal. Chem. 2007;87:715–722. doi: 10.1080/03067310701327741. DOI
Huang X.R., Li Y.Z., Yang G.L., Liu L.L., Qu Y., Zhang W.J. A novel method for fabrication of a glass-electrode-based lipase sensor. Chin. Chem. Lett. 2001;12:453–456.
Pijanowska D.G., Baraniecka A., Wiater R., Ginalska G., Lobarzewski J., Torbicz W. The ph-detection of triglycerides. Sens. Actuator B-Chem. 2001;78:263–266. doi: 10.1016/S0925-4005(01)00823-1. DOI
Ma B.K., Cheong L.Z., Weng X.C., Tan C.P., Shen C. Lipase@zif-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim. Acta. 2018;283:509–516. doi: 10.1016/j.electacta.2018.06.176. DOI
Reedy K.G., Madhavi G., Swamy B.E.K. Mobilized lipase enzymatic biosensor for the determination of chlorfenvinphos and malathion in contaminated water samples: A voltammetric study. J. Mol. Liq. 2014;198:181–186.
Tchieno F.M.M., Tonle I.K. P-nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 2018;37:20170019. doi: 10.1515/revac-2017-0019. DOI
Zehani N., Dzyadevych S.V., Kherrat R., Jaffrezic-Renault N.J. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front. Chem. 2014;2:44. doi: 10.3389/fchem.2014.00044. PubMed DOI PMC
Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15:13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC
Pohanka M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 2017;71:1553–1561. doi: 10.1007/s11696-017-0166-z. DOI
Pliego J., Mateos J.C., Rodriguez J., Valero F., Baeza M., Femat R., Camacho R., Sandoval G., Herrera-Lopez E.J. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors. 2015;15:2798–2811. doi: 10.3390/s150202798. PubMed DOI PMC
Krieg A.K., Gauglitz G. An optical sensor for the detection of human pancreatic lipase. Sens. Actuator B-Chem. 2014;203:663–669. doi: 10.1016/j.snb.2014.07.036. DOI
Pohanka M., Zakova J., Sedlacek I. Digital camera-based lipase biosensor for the determination of paraoxon. Sens. Actuator B Chem. 2018;273:610–615. doi: 10.1016/j.snb.2018.06.084. DOI
Zheng J., Wei W., Lan X., Zhang Y., Wang Z. Fluorescent microplate assay method for high-throughput detection of lipase transesterification activity. Anal. Biochem. 2018;549:26–28. doi: 10.1016/j.ab.2018.03.010. PubMed DOI
Current Trends in the Biosensors for Biological Warfare Agents Assay