Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review

. 2019 Feb 10 ; 24 (3) : . [epub] 20190210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30744203

Grantová podpora
TH03030336 TACR

Lipases are enzymes responsible for the conversion of triglycerides and other esterified substrates, they are involved in the basic metabolism of a wide number of organisms, from a simple microorganism and to mammals. They also have broad applicability in many fields from which industrial biotechnology, the production of cleaning agents, and pharmacy are the most important. The use of lipases in analytical chemistry where it can serve as a part of biosensors or bioassays is an application of growing interest and has become another important use. This review is focused on the description of lipases chemistry, their current applications and the methods for their assay measurement. Examples of bioassays and biosensors, including their physical and chemical principles, performance for specific substrates, and discussion of their relevance, are given in this work.

Zobrazit více v PubMed

Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013;46:1849–1868. doi: 10.1080/00032719.2013.780240. DOI

Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11:448. doi: 10.3390/ma11030448. PubMed DOI PMC

Priyanka P., Kinsella G., Henehan G.T., Ryan B.J. Isolation, purification and characterization of a novel solvent stable lipase from pseudomonas reinekei. Protein Expr. Purif. 2019;153:121–130. doi: 10.1016/j.pep.2018.08.007. PubMed DOI

Mehta A., Grover C., Gupta R. Purification of lipase from aspergillus fumigatus using octyl sepharose column chromatography and its characterization. J. Basic Microbiol. 2018;58:857–866. doi: 10.1002/jobm.201800129. PubMed DOI

Zhou Y.J., Hu C.L., Wang N., Zhang W.W., Yu X.Q. Purification of porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and potassium phosphate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013;926:77–82. doi: 10.1016/j.jchromb.2013.03.005. PubMed DOI

Herrera-Lopez E.J. Lipase and phospholipase biosensors: A review. Methods Mol. Biol. 2012;861:525–543. PubMed

Sandoval G., Herrera-Lopez E.J. Lipase, phospholipase, and esterase biosensors (review) Methods Mol. Biol. 2018;1835:391–425. PubMed

Nguyen H.H., Lee S.H., Lee U.J., Fermin C.D., Kim M. Immobilized enzymes in biosensor applications. Materials. 2019;12:121. doi: 10.3390/ma12010121. PubMed DOI PMC

Akoh C.C., Lee G.C., Liaw Y.C., Huang T.H., Shaw J.F. Gdsl family of serine esterases/lipases. Prog. Lipid Res. 2004;43:534–552. doi: 10.1016/j.plipres.2004.09.002. PubMed DOI

Doolittle M.H., Peterfy M. Mechanisms of lipase maturation. Clin. Lipidol. 2010;5:71–85. doi: 10.2217/clp.09.84. PubMed DOI PMC

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI

Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008 - present) Expert Opin. Ther. Pat. 2012;22:871–886. doi: 10.1517/13543776.2012.701620. PubMed DOI

Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015;69:4–16. doi: 10.2478/s11696-014-0542-x. DOI

Wong H., Schotz M.C. The lipase gene family. J. Lipid Res. 2002;43:993–999. doi: 10.1194/jlr.R200007-JLR200. PubMed DOI

Holmes R.S., Vandeberg J.L., Cox L.A. Vertebrate hepatic lipase genes and proteins: A review supported by bioinformatic studies. Open Access Bioinformatics. 2011;22:85–95. doi: 10.2147/OAB.S18401. PubMed DOI PMC

Murthy V., Julien P., Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 1996;70:101–135. doi: 10.1016/0163-7258(96)00005-8. PubMed DOI

Patel R.N. Stereoselective biotransformations in synthesis of some pharmaceutical intermediates. Adv. Appl. Microbiol. 1997;43:91–140. PubMed

Yamamoto K., Ueno Y., Otsubo K., Kawakami K., Komatsu K. Production of s-(+)-ibuprofen from a nitrile compound by acinetobacter sp. Strain ak226. Appl. Environ. Microbiol. 1990;56:3125–3129. PubMed PMC

Matsumane H., Furui M., Shibatani T., Tosa T. Production of optically active 3-phenylglycidic acid ester by the lipase from serratia marcescens in a hollow-fiber membrane reactor. J. Ferment. Bioeng. 1994;78:59–63. doi: 10.1016/0922-338X(94)90179-1. DOI

Patel R.N., Banerjee A., Ko R.Y., Howell J.M., Li W.S., Comezoglu F.T. Enzymic preparation of (3r-cis)-3-acetyloxy-4-phenyl-2-azetidinone: A taxol side-chain synthon. Biotechnol. Appl. Biochem. 1994;20:23–33. PubMed

Acosta A., Filice M., Fernandez-Lorente G., Palomo J.M., Guisan J.M. Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized rhizomucor miehei lipase. Bioresour. Technol. 2011;102:507–512. doi: 10.1016/j.biortech.2010.08.095. PubMed DOI

Kaewprapan K., Wongkongkatep J., Panbangred W., Phinyocheep P., Marie E., Durand A., Inprakhon P. Lipase-catalyzed synthesis of hydrophobically modified dextrans: Activity and regioselectivity of lipase from candida rugosa. J. Biosci. Bioeng. 2011;112:124–129. doi: 10.1016/j.jbiosc.2011.04.004. PubMed DOI

Lianghua T., Liming X., Min S., Huaying G. Purification and application of a lipase from penicillium expansum ped-03. Appl. Biochem. Biotechnol. 2007;142:194–199. doi: 10.1007/s12010-007-0043-2. PubMed DOI

Athenstaedt K., Daum G. Tgl4p and tgl5p, two triacylglycerol lipases of the yeast saccharomyces cerevisiae are localized to lipid particles. J. Biol. Chem. 2005;280:37301–37309. doi: 10.1074/jbc.M507261200. PubMed DOI

Maruyama T., Nakajima M., Kondo H., Kawasaki K., Seki M., Goto M. Can lipases hydrolyze a peptide bond? Enzyme Microb. Technol. 2003;32:655–657. doi: 10.1016/S0141-0229(03)00053-X. DOI

Fernandez J., Mohedano A.F., Fernandez-Garcia E., Medina M., Nunez M. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, micrococcus sp. Inia 528. Int. Dairy J. 2004;14:135–142. doi: 10.1016/S0958-6946(03)00168-7. DOI

Arreguin-Espinosa R., Arreguin B., Gonzalez C. Purification and properties of a lipase from cephaloleia presignis (coleoptera, chrysomelidae) Biotechnol. Appl. Biochem. 2000;31:239–244. doi: 10.1042/BA19990088. PubMed DOI

Quiroga A.D., Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem. Pharmacol. 2018;155:233–241. doi: 10.1016/j.bcp.2018.07.005. PubMed DOI

Srivastava G., Apovian C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep. 2018;7:147–161. doi: 10.1007/s13679-018-0300-4. PubMed DOI

Bialecka-Florjanczyk E., Fabiszewska A.U., Krzyczkowska J., Kurylowicz A. Synthetic and natural lipase inhibitors. Mini Rev. Med. Chem. 2018;18:672–683. doi: 10.2174/1389557516666160630123356. PubMed DOI

Lunagariya N.A., Patel N.K., Jagtap S.C., Bhutani K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. Excli. J. 2014;13:897–921. PubMed PMC

Kumari A., Gupta R. Extracellular expression and characterization of thermostable lipases, lip8, lip14 and lip18, from yarrowia lipolytica. Biotechnol. Lett. 2012;34:1733–1739. doi: 10.1007/s10529-012-0958-8. PubMed DOI

Deb C., Daniel J., Sirakova T.D., Abomoelak B., Dubey V.S., Kolattukudy P.E. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in mycobacterium tuberculosis. J. Biol. Chem. 2006;281:3866–3875. doi: 10.1074/jbc.M505556200. PubMed DOI PMC

Nishio T., Chikano T., Kamimura M. Purification and some properties of lipase produced by pseudomonas fragi 22.39 b. Agric. Biol. Chem. 1987;51:181–186.

Zhao H., Zheng L., Wang X., Liu Y., Xu L., Yan Y. Cloning, expression and characterization of a new lipase from yarrowia lipolytica. Biotechnol. Lett. 2011;33:2445–2452. doi: 10.1007/s10529-011-0711-8. PubMed DOI

Wilcox M.D., Brownlee I.A., Richardson J.C., Dettmar P.W., Pearson J.P. The modulation of pancreatic lipase activity by alginates. Food Chem. 2014;146:479–484. doi: 10.1016/j.foodchem.2013.09.075. PubMed DOI PMC

Dutta S., Ray L. Production and characterization of an alkaline thermostable crude lipase from an isolated strain of bacillus cereus c(7) Appl. Biochem. Biotechnol. 2009;159:142–154. doi: 10.1007/s12010-009-8543-x. PubMed DOI

Muderhwa J.M., Ratomahenina R., Pina M., Graille J., Galzy P. Purification and properties of the lipases from rhodotorula pilimanae hedrick and burke. Appl. Microbiol. Biotechnol. 1986;23:348–354. doi: 10.1007/BF00257031. DOI

Edashige Y., Murakami N., Tsujita T. Inhibitory effect of pectin from the segment membrane of citrus fruits on lipase activity. J. Nutr. Sci. Vitaminol. 2008;54:409–415. doi: 10.3177/jnsv.54.409. PubMed DOI

Ebrahimpour A., Rahman R.N., Basri M., Salleh A.B. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from geobacillus sp. Strain arm. Bioresour. Technol. 2011;102:6972–6981. doi: 10.1016/j.biortech.2011.03.083. PubMed DOI

Rivera-Perez C., del Toro Mde L., Garcia-Carreno F. Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (litopenaeus vannamei) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011;158:99–105. doi: 10.1016/j.cbpb.2010.10.004. PubMed DOI

Salah R.B., Mosbah H., Fendri A., Gargouri A., Gargouri Y., Mejdoub H. Biochemical and molecular characterization of a lipase produced by rhizopus oryzae. FEMS Microbiol. Lett. 2006;260:241–248. doi: 10.1111/j.1574-6968.2006.00323.x. PubMed DOI

Sahebkar A., Simental-Mendia L.E., Reiner Z., Kovanen P.T., Simental-Mendia M., Bianconi V., Pirro M. Effect of orlistat on plasma lipids and body weight: A systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol. Res. 2017;122:53–65. doi: 10.1016/j.phrs.2017.05.022. PubMed DOI

Guerrand D. Lipases industrial applications: Focus on food and agroindustries. OCL. 2017;24:D403. doi: 10.1051/ocl/2017031. DOI

Hasan F., Shah A.A., Hameed A. Inducstrial applications of microbial lipases. Enzyme Microb. Technol. 2006;39:235–251. doi: 10.1016/j.enzmictec.2005.10.016. DOI

Andualeme B., Gessesse A. Microbial lipases and their industrial applications: Review. Biotechnology. 2012;11:100–118. doi: 10.3923/biotech.2012.100.118. DOI

Stoytcheva M., Montero G., Zlatev R., Leon J.A., Gochev V. Analytical methods for lipases activity determination: A review. Curr. Anal. Chem. 2012;8:400–407. doi: 10.2174/157341112801264879. DOI

Gopinath S.C., Anbu P., Lakshmipriya T., Hilda A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed. Res. Int. 2013;154549:24. doi: 10.1155/2013/154549. PubMed DOI PMC

Kumar D., Kumar L., Nagar S., Raina C., Parshad R., Gupta V.K. Screening, isolation and production of lipase/esterase producing bacillus sp. Strain dvl2 and its potential evaluation in esterification and resolution reactions. Arch. Appl. Sci. Res. 2012;4:1763–1770.

Plou F.J., Ferrer M., Nuero O.M., Calvo M.V., Alcalde M., Reyes F., Ballesteros A. Analysis of tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 1998;12:183–186. doi: 10.1023/A:1008809105270. DOI

Glogauer A., Martini V.P., Faoro H., Couto G.H., Muller-Santos M., Monteiro R.A., Mitchell D.A., de Souza E.M., Pedrosa F.O., Krieger N. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact. 2011;10:1475–2859. doi: 10.1186/1475-2859-10-54. PubMed DOI PMC

Walter G.L., McGraw P., Tvedten H.W. Serum lipase determination in the dog: A comparison of a titrimetric method with an automated kinetic method. Vet. Clin. Pathol. 1992;21:23–27. doi: 10.1111/j.1939-165X.1992.tb00578.x. PubMed DOI

Jensen R.G. Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids. 1983;18:650–657. doi: 10.1007/BF02534677. PubMed DOI

Kartal F., Kilinc A., Timur S. Lipase biosensor for tributyrin and pesticide detection. Int. J. Environ. Anal. Chem. 2007;87:715–722. doi: 10.1080/03067310701327741. DOI

Huang X.R., Li Y.Z., Yang G.L., Liu L.L., Qu Y., Zhang W.J. A novel method for fabrication of a glass-electrode-based lipase sensor. Chin. Chem. Lett. 2001;12:453–456.

Pijanowska D.G., Baraniecka A., Wiater R., Ginalska G., Lobarzewski J., Torbicz W. The ph-detection of triglycerides. Sens. Actuator B-Chem. 2001;78:263–266. doi: 10.1016/S0925-4005(01)00823-1. DOI

Ma B.K., Cheong L.Z., Weng X.C., Tan C.P., Shen C. Lipase@zif-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim. Acta. 2018;283:509–516. doi: 10.1016/j.electacta.2018.06.176. DOI

Reedy K.G., Madhavi G., Swamy B.E.K. Mobilized lipase enzymatic biosensor for the determination of chlorfenvinphos and malathion in contaminated water samples: A voltammetric study. J. Mol. Liq. 2014;198:181–186.

Tchieno F.M.M., Tonle I.K. P-nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 2018;37:20170019. doi: 10.1515/revac-2017-0019. DOI

Zehani N., Dzyadevych S.V., Kherrat R., Jaffrezic-Renault N.J. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front. Chem. 2014;2:44. doi: 10.3389/fchem.2014.00044. PubMed DOI PMC

Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15:13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC

Pohanka M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 2017;71:1553–1561. doi: 10.1007/s11696-017-0166-z. DOI

Pliego J., Mateos J.C., Rodriguez J., Valero F., Baeza M., Femat R., Camacho R., Sandoval G., Herrera-Lopez E.J. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors. 2015;15:2798–2811. doi: 10.3390/s150202798. PubMed DOI PMC

Krieg A.K., Gauglitz G. An optical sensor for the detection of human pancreatic lipase. Sens. Actuator B-Chem. 2014;203:663–669. doi: 10.1016/j.snb.2014.07.036. DOI

Pohanka M., Zakova J., Sedlacek I. Digital camera-based lipase biosensor for the determination of paraoxon. Sens. Actuator B Chem. 2018;273:610–615. doi: 10.1016/j.snb.2018.06.084. DOI

Zheng J., Wei W., Lan X., Zhang Y., Wang Z. Fluorescent microplate assay method for high-throughput detection of lipase transesterification activity. Anal. Biochem. 2018;549:26–28. doi: 10.1016/j.ab.2018.03.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...