Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
26110404
PubMed Central
PMC4507694
DOI
10.3390/s150613752
PII: s150613752
Knihovny.cz E-zdroje
- Klíčová slova
- CMYK, RGB, acetylcholinesterase, butyrylcholinesterase, colorimetry, diagnosis, digital photography, imagination, mobile phone, naked eye detection, photography, photometry,
- MeSH
- butyrylcholinesterasa metabolismus MeSH
- butyrylthiocholin analýza metabolismus MeSH
- chytrý telefon * MeSH
- enzymatické testy přístrojové vybavení metody MeSH
- fotografování přístrojové vybavení MeSH
- kolorimetrie přístrojové vybavení MeSH
- limita detekce MeSH
- mobilní aplikace MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- butyrylcholinesterasa MeSH
- butyrylthiocholin MeSH
Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.
Zobrazit více v PubMed
Sirawatcharin S., Saithongdee A., Chaicham A., Tomapatanaget B., Imyim A., Praphairaksit N. Naked-eye and colorimetric detection of arsenic(III) using difluoroboron-curcumin in aqueous and resin bead support systems. Anal. Sci. 2014;30:1129–1134. doi: 10.2116/analsci.30.1129. PubMed DOI
Kuwar A., Patil R., Singh A., Bendre R., Singh N. A fluorescent and colorimetric sensor for nanomolar detection of Co2+ in water. ChemPhysChem. 2014;15:3933–3937. doi: 10.1002/cphc.201402534. PubMed DOI
Smorowska A., Lubkowski K., Kic B. The comparison of nutrients release from conventional granular and prolongated release fertilizers. Przem. Chem. 2013;92:753–756.
Kumpanenko I.V., Roshchin A.V., Ivanova N.A., Bloshenko A.V., Shalynina N.A., Korneeva T.N. Colorimetry: Choice of colorimetric parameters for chromophore concentration measurements. Russ. J. Gen. Chem. 2014;84:2295–2304. doi: 10.1134/S1070363214110498. DOI
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC
Yen T., Nightingale B.N., Burns J.C., Sullivan D.R., Stewart P.M. Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clin. Chem. 2003;49:1297–1308. doi: 10.1373/49.8.1297. PubMed DOI
Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012;22:871–886. doi: 10.1517/13543776.2012.701620. PubMed DOI
Pohanka M. Butyrylcholinesterase as a biochemical marker, a review. Brat. Med. J. 2013;114:726–734. doi: 10.4149/BLL_2013_153. PubMed DOI
Mosca A., Patrosso C., Bonora R., Ceriotti F., Franzini C., Zaninotto M., Paleari R., Marocchi A., Panteghini M. Genetic defects of serum cholinesterase: Enzymatic activity dibucaine and fluoride numbers, and genotype. Clin. Chem. 2000;46:A174.
Mosca A., Bonora R., Ceriotti F., Franzini C., Lando G., Patross M.C., Zaninotto M., Panteghini M. Assay using succinyldithiocholine as substrate: The method of choice for the measurement of cholinesterase catalytic activity in serum to diagnose succinyldicholine sensitivity. Clin. Chem. Lab. Med. 2003;41:317–322. doi: 10.1515/CCLM.2003.051. PubMed DOI
Azzarelli J.M., Mirica K.A., Ravnsbaek J.B., Swager T.M. Wireless gas detection with a smartphone via RF communication. Proc. Natl. Acad. Sci. USA. 2014;111:18162–18166. doi: 10.1073/pnas.1415403111. PubMed DOI PMC
Sicard C., Gien C., Aubie B., Wallace D., Jahanshahi-Anbuhi S., Pennings K., Daigger G.T., Pelton R., Brennan J.D., Fillipe C.D. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–369. doi: 10.1016/j.watres.2014.12.005. PubMed DOI
Shen L., Hagen J.A., Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12:4240–4243. doi: 10.1039/c2lc40741h. PubMed DOI
Petryayeva E., Algar W.R. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015 doi: 10.1039/C5AN00475F. in press. PubMed DOI
Cortazar B., Koydemir H.C., Tseng D., Feng S., Ozcan A. Quantification of plant chlorophyll content using Google Glass. Lab Chip. 2015;15:1708–1716. doi: 10.1039/C4LC01279H. PubMed DOI PMC
Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374. doi: 10.1080/00032719.2011.644743. DOI
Villatte F., Bachman T.T., Hussein A.S., Schmid R.D. Acetylcholinesterase assay for rapid expression screening in liquid and solid media. Biotechniques. 2001;30:81–86. PubMed
Prats-Montalban J.M., de Juan A., Ferrer A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst. 2011;107:1–23. doi: 10.1016/j.chemolab.2011.03.002. DOI
Ahmed M., Rocha J.B., Mazzanti C.M., Morsch A.L., Cargnelutti D., Correa M., Loro V., Morsch V.M., Schetinger M.R. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology. 2007;16:363–369. doi: 10.1007/s10646-007-0137-1. PubMed DOI
Skladal P., Nunes G.S., Yamanaka H., Ribeiro M.L. Detection of carbamate pesticides in vegetable samples using cholinesterase-based biosensors. Electroanalysis. 1997;9:1083–1087. doi: 10.1002/elan.1140091410. DOI
Zitova A., O’Mahony F.C., Kurochkin I.N., Papkovsky D.B. A simple screening assay for cholinesterase activity and inhibition based on optical oxygen detection. Anal. Lett. 2010;43:1746–1755. doi: 10.1080/00032711003653833. DOI
Villalba L.J.G., Orozco A.L.S., Corripio J.R. Smartphone image clustering. Expert Syst. Appl. 2015;42:1927–1940. doi: 10.1016/j.eswa.2014.10.018. DOI
Zangheri M., Cevenini L., Anfossi L., Baggiani C., Simoni P., Di Nardo F., Roda A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015;64:63–68. doi: 10.1016/j.bios.2014.08.048. PubMed DOI
A Butyrylcholinesterase Camera Biosensor Tested for Carbofuran and Paraoxon Assay
Current Trends in the Biosensors for Biological Warfare Agents Assay
Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review