Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

. 2015 Jun 11 ; 15 (6) : 13752-62. [epub] 20150611

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26110404

Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

Zobrazit více v PubMed

Sirawatcharin S., Saithongdee A., Chaicham A., Tomapatanaget B., Imyim A., Praphairaksit N. Naked-eye and colorimetric detection of arsenic(III) using difluoroboron-curcumin in aqueous and resin bead support systems. Anal. Sci. 2014;30:1129–1134. doi: 10.2116/analsci.30.1129. PubMed DOI

Kuwar A., Patil R., Singh A., Bendre R., Singh N. A fluorescent and colorimetric sensor for nanomolar detection of Co2+ in water. ChemPhysChem. 2014;15:3933–3937. doi: 10.1002/cphc.201402534. PubMed DOI

Smorowska A., Lubkowski K., Kic B. The comparison of nutrients release from conventional granular and prolongated release fertilizers. Przem. Chem. 2013;92:753–756.

Kumpanenko I.V., Roshchin A.V., Ivanova N.A., Bloshenko A.V., Shalynina N.A., Korneeva T.N. Colorimetry: Choice of colorimetric parameters for chromophore concentration measurements. Russ. J. Gen. Chem. 2014;84:2295–2304. doi: 10.1134/S1070363214110498. DOI

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI

Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC

Yen T., Nightingale B.N., Burns J.C., Sullivan D.R., Stewart P.M. Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clin. Chem. 2003;49:1297–1308. doi: 10.1373/49.8.1297. PubMed DOI

Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI

Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012;22:871–886. doi: 10.1517/13543776.2012.701620. PubMed DOI

Pohanka M. Butyrylcholinesterase as a biochemical marker, a review. Brat. Med. J. 2013;114:726–734. doi: 10.4149/BLL_2013_153. PubMed DOI

Mosca A., Patrosso C., Bonora R., Ceriotti F., Franzini C., Zaninotto M., Paleari R., Marocchi A., Panteghini M. Genetic defects of serum cholinesterase: Enzymatic activity dibucaine and fluoride numbers, and genotype. Clin. Chem. 2000;46:A174.

Mosca A., Bonora R., Ceriotti F., Franzini C., Lando G., Patross M.C., Zaninotto M., Panteghini M. Assay using succinyldithiocholine as substrate: The method of choice for the measurement of cholinesterase catalytic activity in serum to diagnose succinyldicholine sensitivity. Clin. Chem. Lab. Med. 2003;41:317–322. doi: 10.1515/CCLM.2003.051. PubMed DOI

Azzarelli J.M., Mirica K.A., Ravnsbaek J.B., Swager T.M. Wireless gas detection with a smartphone via RF communication. Proc. Natl. Acad. Sci. USA. 2014;111:18162–18166. doi: 10.1073/pnas.1415403111. PubMed DOI PMC

Sicard C., Gien C., Aubie B., Wallace D., Jahanshahi-Anbuhi S., Pennings K., Daigger G.T., Pelton R., Brennan J.D., Fillipe C.D. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–369. doi: 10.1016/j.watres.2014.12.005. PubMed DOI

Shen L., Hagen J.A., Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12:4240–4243. doi: 10.1039/c2lc40741h. PubMed DOI

Petryayeva E., Algar W.R. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015 doi: 10.1039/C5AN00475F. in press. PubMed DOI

Cortazar B., Koydemir H.C., Tseng D., Feng S., Ozcan A. Quantification of plant chlorophyll content using Google Glass. Lab Chip. 2015;15:1708–1716. doi: 10.1039/C4LC01279H. PubMed DOI PMC

Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374. doi: 10.1080/00032719.2011.644743. DOI

Villatte F., Bachman T.T., Hussein A.S., Schmid R.D. Acetylcholinesterase assay for rapid expression screening in liquid and solid media. Biotechniques. 2001;30:81–86. PubMed

Prats-Montalban J.M., de Juan A., Ferrer A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst. 2011;107:1–23. doi: 10.1016/j.chemolab.2011.03.002. DOI

Ahmed M., Rocha J.B., Mazzanti C.M., Morsch A.L., Cargnelutti D., Correa M., Loro V., Morsch V.M., Schetinger M.R. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology. 2007;16:363–369. doi: 10.1007/s10646-007-0137-1. PubMed DOI

Skladal P., Nunes G.S., Yamanaka H., Ribeiro M.L. Detection of carbamate pesticides in vegetable samples using cholinesterase-based biosensors. Electroanalysis. 1997;9:1083–1087. doi: 10.1002/elan.1140091410. DOI

Zitova A., O’Mahony F.C., Kurochkin I.N., Papkovsky D.B. A simple screening assay for cholinesterase activity and inhibition based on optical oxygen detection. Anal. Lett. 2010;43:1746–1755. doi: 10.1080/00032711003653833. DOI

Villalba L.J.G., Orozco A.L.S., Corripio J.R. Smartphone image clustering. Expert Syst. Appl. 2015;42:1927–1940. doi: 10.1016/j.eswa.2014.10.018. DOI

Zangheri M., Cevenini L., Anfossi L., Baggiani C., Simoni P., Di Nardo F., Roda A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015;64:63–68. doi: 10.1016/j.bios.2014.08.048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace