Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone

. 2017 ; 2017 () : 3712384. [epub] 20170213

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28286520

Smartphones are widely spread and their usage does not require any trained personnel. Recently, smartphones were successfully used in analytical chemistry as a simple detection tool in some applications. This paper focuses on immobilization of acetylcholinesterase (AChE) onto commercially available pH strips with stabilization in the gelatin membrane. AChE degrades acetylcholine into choline and acetic acid which causes color change of acid-base indicator. Smartphone served as a tool for measurement of indicator color change from red to orange while inhibitors blocked this process. AChE inhibitors were measured with limits of detection, 149 nM and 22.3 nM for galanthamine and donepezil, respectively. Organic solvents were measured for method interferences. Measurement procedure was performed on 3D printed holder and digital photography was evaluated using red-green-blue (RGB) channels. The invented assay was validated to the standard Ellman's test and verified on murine plasma samples spiked with inhibitors. We consider that the assay is fully suitable for practical performance.

Zobrazit více v PubMed

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers. 2011;155(3):219–230. doi: 10.5507/bp.2011.036. PubMed DOI

Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers. 2015;69(1):4–16. doi: 10.2478/s11696-014-0542-x. DOI

Ellman G. L., Courtney K. D., Andres V., Jr., Featherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 1961;7(2):88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

George P. M., Abernethy M. H. Improved Ellman procedure for erythrocyte cholinesterase. Clinical Chemistry. 1983;29(2):365–368. PubMed

Gorun V., Proinov I., Băltescu V., Balaban G., Bârzu O. Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Analytical Biochemistry. 1978;86(1):324–326. doi: 10.1016/0003-2697(78)90350-0. PubMed DOI

Pohanka M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta. 2014;119:412–416. doi: 10.1016/j.talanta.2013.11.045. PubMed DOI

Kostelnik A., Cegan A., Pohanka M. Electrochemical determination of activity of acetylcholinesterase immobilized on magnetic particles. International Journal of Electrochemical Science. 2016;11(6):4840–4849. doi: 10.20964/2016.06.39. DOI

Morís-Varas F., Shah A., Aikens J., Nadkarni N. P., Rozzell J. D., Demirjian D. C. Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity. Bioorganic and Medicinal Chemistry. 1999;7(10):2183–2188. doi: 10.1016/s0968-0896(99)00149-2. PubMed DOI

Kostelnik A., Cegan A., Pohanka M. Color change of phenol red by integrated smart phone camera as a tool for the determination of neurotoxic compounds. Sensors. 2016;16(9, article 1212) doi: 10.3390/s16091212. PubMed DOI PMC

Timur S., Telefoncu A. Acetylcholinesterase (AChE) electrodes based on gelatin and chitosan matrices for the pesticide detection. Artificial Cells, Blood Substitutes, and Biotechnology. 2004;32(3):427–442. doi: 10.1081/bio-200027497. PubMed DOI

Zhang J., Zhang J., Zhang F., et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir. 2010;26(9):6083–6085. doi: 10.1021/la904014z. PubMed DOI

Mogharabi M., Nassiri-Koopaei N., Bozorgi-Koushalshahi M., Nafissi-Varcheh N., Bagherzadeh G., Faramarzi M. A. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorganic Chemistry and Applications. 2012;2012:6. doi: 10.1155/2012/823830.823830 PubMed DOI PMC

Sheldon R. A. Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis. 2007;349(8-9):1289–1307. doi: 10.1002/adsc.200700082. DOI

Pohanka M. Cholinesterases in biorecognition and biosensors construction: a review. Analytical Letters. 2013;46(12):1849–1868. doi: 10.1080/00032719.2013.780240. DOI

Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Analytical Letters. 2012;45(4):367–374. doi: 10.1080/00032719.2011.644743. DOI

Zheng Y., Liu Z., Jing Y., Li J., Zhan H. An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides. Sensors and Actuators, B: Chemical. 2015;210:389–397. doi: 10.1016/j.snb.2015.01.003. DOI

Grudpan K., Kolev S. D., Lapanantnopakhun S., McKelvie I. D., Wongwilai W. Applications of everyday IT and communications devices in modern analytical chemistry: a review. Talanta. 2015;136:84–94. doi: 10.1016/j.talanta.2014.12.042. PubMed DOI

García A., Erenas M. M., Marinetto E. D., et al. Mobile phone platform as portable chemical analyzer. Sensors and Actuators, B: Chemical. 2011;156(1):350–359. doi: 10.1016/j.snb.2011.04.045. DOI

Lu Y., Shi W., Qin J., Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–582. doi: 10.1002/elps.200800586. PubMed DOI

Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15(6):13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC

White B. J., Legako J. A., Harmon H. J. Spectrophotometric detection of cholinesterase inhibitors with an integrated acetyl-/butyrylcholinesterase surface. Sensors and Actuators, B: Chemical. 2003;89(1-2):107–111. doi: 10.1016/S0925-4005(02)00450-1. DOI

Cuartero M., García M. S., García-Cánovas F., Ortuño J. Á. New approach for the potentiometric-enzymatic assay of reversible- competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta. 2013;110:8–14. doi: 10.1016/j.talanta.2013.03.022. PubMed DOI

Golcu A., Ozkan S. A. Electroanalytical determination of donepezil HCl in tablets and human serum by differential pulse and osteryoung square wave voltammetry at a glassy carbon electrode. Pharmazie. 2006;61(9):760–765. PubMed

Xu Z., Yao S., Wei Y., et al. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization fourier transform mass spectrometry. Journal of the American Society for Mass Spectrometry. 2008;19(12):1849–1855. doi: 10.1016/j.jasms.2008.07.025. PubMed DOI

Wille T., Thiermann H., Worek F. Effect of different buffers on kinetic properties of human acetylcholinesterase and the interaction with organophosphates and oximes. Archives of Toxicology. 2011;85(3):193–198. doi: 10.1007/s00204-010-0578-9. PubMed DOI

Shaonan L., Xianchuan X., Guonian Z., Yajun T. Kinetic characters and resistance to inhibition of crude and purified brain acetylcholinesterase of three freshwater fishes by organophosphates. Aquatic Toxicology. 2004;68(4):293–299. doi: 10.1016/j.aquatox.2004.03.013. PubMed DOI

Jiang H., Liu S., Zhao P., Pope C. Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology. 2009;39(9):646–653. doi: 10.1016/j.ibmb.2009.07.002. PubMed DOI PMC

Boyd A. E., Marnett A. B., Wong L., Taylor P. Probing the active center gorge of acetylcholinesterase by fluorophores linked to substituted cysteines. The Journal of Biological Chemistry. 2000;275(29):22401–22408. doi: 10.1074/jbc.m000606200. PubMed DOI

Pohanka M., Hrabinova M., Fusek J., et al. Electrochemical biosensor based on acetylcholinesterase and indoxylacetate for assay of neurotoxic compounds represented by paraoxon. International Journal of Electrochemical Science. 2012;7(1):50–57.

da Silva J. I., de Moraes M. C., Vieira L. C. C., Corrêa A. G., Cass Q. B., Cardoso C. L. Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors. Journal of Pharmaceutical and Biomedical Analysis. 2013;73:44–52. doi: 10.1016/j.jpba.2012.01.026. PubMed DOI

Liston D. R., Nielsen J. A., Villalobos A., et al. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer's disease. European Journal of Pharmacology. 2004;486(1):9–17. doi: 10.1016/j.ejphar.2003.11.080. PubMed DOI

Yasui-Furukori N., Furuya R., Takahata T., Tateishi T. Determination of donepezil, an acetylcholinesterase inhibitor, in human plasma by high-performance liquid chromatography with ultraviolet absorbance detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2002;768(2):261–265. doi: 10.1016/S1570-0232(01)00592-X. PubMed DOI

Apostolou C., Dotsikas Y., Kousoulos C., Loukas Y. L. Quantitative determination of donepezil in human plasma by liquid chromatography/tandem mass spectrometry employing an automated liquid-liquid extraction based on 96-well format plates. Application to a bioequivalence study. Journal of Chromatography B. 2007;848(2):239–244. doi: 10.1016/j.jchromb.2006.10.037. PubMed DOI

Ghoneim E. M., El-Attar M. A., Ghoneim M. M. Determination of donepezil hydrochloride in pharmaceutical formulation and human serum by square-wave adsorptive cathodic stripping voltammetry. Chemia Analityczna. 2009;54(3):389–402.

Yasir M., Sara U. Development of UV spectrophotometric method for the analysis of acetylcholinesterase inhibitor. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6(9):128–131.

Patel C., Patel N., Kothari C. Quantitative determination of donepezil hydrochloride by a simple and accurate synchronous spectrofluorimetric method in human plasma. Journal of Young Pharmacists. 2014;6(4):47–50. doi: 10.5530/jyp.2014.4.8. DOI

Pohanka M., Fusek J., Adam V., Kizek R. Carbofuran assay using gelatin based biosensor with acetylcholinesterase as a recognition element. International Journal of Electrochemical Science. 2013;8(1):71–79.

Montesinos T., Pérez-Munguia S., Valdez F., Marty J.-L. Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents. Analytica Chimica Acta. 2001;431(2):231–237. doi: 10.1016/S0003-2670(00)01235-6. DOI

Andreescu S., Noguer T., Magearu V., Marty J.-L. Screen-printed electrode based on ache for the detection of pesticides in presence of organic solvents. Talanta. 2002;57(1):169–176. doi: 10.1016/S0039-9140(02)00017-6. PubMed DOI

Sook S., Portia W., Chang-Hwei C. Biochemical studies of the actions of ethanol on acetylcholinesterase activity: ethnol-enzyme-solvent interaction. International Journal of Biochemistry. 1991;23(2):169–174. doi: 10.1016/0020-711x(91)90185-p. PubMed DOI

Obregon A. D. C., Schetinger M. R. C., Correa M. M., et al. Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochemical Research. 2005;30(3):379–384. doi: 10.1007/s11064-005-2612-5. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity

. 2024 Mar 09 ; 24 (6) : . [epub] 20240309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...