Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity

. 2024 Mar 09 ; 24 (6) : . [epub] 20240309

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38544037

Grantová podpora
DZRO-FVZ22-ZHN II Ministry of Defence
SV/FVZ202103 Ministry of Education Youth and Sports

Environmental screening is essential due to the increased occurrence of harmful substances in the environment. Open Meter Duo (OMD) is an open-source field photo/fluorimeter that uses an RGB diode that imitates a color according to the selected wavelength and uses a UV LED from the security kit diode as an excitation light source. The prepared PCB shield with a 3D-printed aperture was connected to Arduino UNO R4 WiFi. This system was used for the fluorescent detection of cholinesterase activity with the indoxyl acetate method. Carbofuran-a toxic pesticide-and donepezil-a drug used to treat Alzheimer's disease-were tested as model inhibitors of cholinesterase activity. The limit of detection of indoxyl acetate was 11.6 μmol/L, and the IC50 values of the inhibitors were evaluated. This system is optimized for wireless use in field analysis with added cloud support and power source. The time of analysis was 5 min for the fluorimetric assay and 20 min for the optional photometric assay. The time of field operation was approximately 4 h of continuous measurement. This system is ready to be used as a cheap and easy control platform for portable use in drug control and point-of-care testing.

Zobrazit více v PubMed

Gong C., Fan Y., Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta. 2022;240:123145. doi: 10.1016/j.talanta.2021.123145. PubMed DOI

Arduini F., Cinti S., Caratelli V., Amendola L., Palleschi G., Moscone D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019;126:346–354. doi: 10.1016/j.bios.2018.10.014. PubMed DOI

Thet Tun W.S., Saenchoopa A., Daduang S., Daduang J., Kulchat S., Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. RSC Adv. 2023;13:9603–9614. doi: 10.1039/D3RA00512G. PubMed DOI PMC

Yu H., Wang M., Cao J., She Y., Zhu Y., Ye J., Abd El-Aty A.M., Hacimuftuoglu A., Wang J., Lao S. Dual-mode detection of organophosphate pesticides in pear and Chinese cabbage based on fluorescence and AuNPs colorimetric assays. Food Chem. 2021;364:130326. doi: 10.1016/j.foodchem.2021.130326. PubMed DOI

Fabini E., Tramarin A., Bartolini M. Combination of human acetylcholinesterase and serum albumin sensing surfaces as highly informative analytical tool for inhibitor screening. J. Pharm. Biomed. Anal. 2018;155:177–184. doi: 10.1016/j.jpba.2018.03.060. PubMed DOI

Choi R.J., Roy A., Jung H.J., Ali M.Y., Min B.-S., Park C.H., Yokozawa T., Fan T.-P., Choi J.S., Jung H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol. 2016;190:219–230. doi: 10.1016/j.jep.2016.06.013. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Pohanka M., Hrabinova M., Kuca K., Simonato J.P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci. 2011;12:2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC

Pidany F., Kroustkova J., Al Mamun A., Suchankova D., Brazzolotto X., Nachon F., Chantegreil F., Dolezal R., Pulkrabkova L., Muckova L., et al. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids—Design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2023;252:115301. doi: 10.1016/j.ejmech.2023.115301. PubMed DOI

Redondo-López S., León A.C., Jiménez K., Solano K., Blanco-Peña K., Mena F. Transient exposure to sublethal concentrations of a pesticide mixture (chlorpyrifos–difenoconazole) caused different responses in fish species from different trophic levels of the same community. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2022;251:109208. doi: 10.1016/j.cbpc.2021.109208. PubMed DOI

Pohanka M., Zakova J. A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity. Sensors. 2021;21:1796. doi: 10.3390/s21051796. PubMed DOI PMC

Kim H.J., Kim Y., Park S.J., Kwon C., Noh H. Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction. BioChip J. 2018;12:326–331. doi: 10.1007/s13206-018-2404-z. DOI

Liu D.M., Xu B.J., Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trac-Trend Anal. Chem. 2021;142:116320. doi: 10.1016/j.trac.2021.116320. DOI

Apilux A., Isarankura-Na-Ayudhya C., Tantimongcolwat T., Prachayasittikul V. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection. EXCLI J. 2015;14:307–319. doi: 10.17179/excli2014-684. PubMed DOI PMC

Shrikrishna N.S., Kaushik A., Gandhi S. Smartphone-assisted detection of monocrotophos pesticide using a portable nano-enabled chromagrid-lightbox system towards point-of-care application. Chemosphere. 2023;330:138704. doi: 10.1016/j.chemosphere.2023.138704. PubMed DOI

Guilbault G.G., Kramer D.N. Resorufin Butyrate and Indoxyl Acetate as Fluorogenic Substrates for Cholinesterase. Anal. Chem. 1965;37:120–123. doi: 10.1021/ac60220a031. PubMed DOI

Zhang W.Y., Tian T., Peng L.J., Zhou H.Y., Zhang H., Chen H., Yang F.Q. A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of beta-Glucosidase Activity. Biosensors. 2022;12:893. doi: 10.3390/bios12100893. PubMed DOI PMC

Rodrigues A.C.M., Barbieri M.V., Chino M., Manco G., Febbraio F. A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor. Sensors. 2022;22:561. doi: 10.3390/s22020561. PubMed DOI PMC

Rodrigues A.C.M., Barbieri M.V., Chino M., Manco G., Febbraio F. A 3D printable adapter for solid-state fluorescence measurements: The case of an immobilized enzymatic bioreceptor for organophosphate pesticides detection. Anal. Bioanal. Chem. 2022;414:1999–2008. doi: 10.1007/s00216-021-03835-1. PubMed DOI PMC

Cetrangolo G.P., Rusko J., Gori C., Carullo P., Manco G., Chino M., Febbraio F. Highly Sensitive Detection of Chemically Modified Thio-Organophosphates by an Enzymatic Biosensing Device: An Automated Robotic Approach. Sensors. 2020;20:1365. doi: 10.3390/s20051365. PubMed DOI PMC

Di Nonno S., Ulber R. Portuino-A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter. Sensors. 2022;22:7916. doi: 10.3390/s22207916. PubMed DOI PMC

López-Pérez G., González-Arjona D., Roldán González E., Román-Hidalgo C. Design of a Portable and Reliable Fluorimeter with High Sensitivity for Molecule Trace Analysis. Chemosensors. 2023;11:389. doi: 10.3390/chemosensors11070389. DOI

Laganovska K., Zolotarjovs A., Vazquez M., Mc Donnell K., Liepins J., Ben-Yoav H., Karitans V., Smits K. Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. Hardwarex. 2020;7:e00108. doi: 10.1016/j.ohx.2020.e00108. PubMed DOI PMC

Jeong H., Shin S., Hwang J., Kim Y.-J., Choi S. Open-Source Fluorescence Spectrometer for Noncontact Scientific Research and Education. J. Chem. Educ. 2021;98:3493–3501. doi: 10.1021/acs.jchemed.1c00560. DOI

Mayer M., Baeumner A.J. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chem. Rev. 2019;119:7996–8027. doi: 10.1021/acs.chemrev.8b00719. PubMed DOI

Mishra S., Zhang W., Lin Z., Pang S., Huang Y., Bhatt P., Chen S. Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere. 2020;259:127419. doi: 10.1016/j.chemosphere.2020.127419. PubMed DOI

Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Kitowski I., Łopucki R., Stachniuk A., Fornal E. A pesticide banned in the European Union over a decade ago is still present in raptors in Poland. Environ. Conserv. 2020;47:310–314. doi: 10.1017/S037689292000034X. DOI

Ruiz-Suarez N., Boada L.D., Henriquez-Hernandez L.A., Gonzalez-Moreo F., Suarez-Perez A., Camacho M., Zumbado M., Almeida-Gonzalez M., Del Mar Travieso-Aja M., Luzardo O.P. Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain) Sci. Total Environ. 2015;505:1093–1099. doi: 10.1016/j.scitotenv.2014.10.093. PubMed DOI

Alvarez J.L., Mozo J.D., Duran E. Analysis of Single Board Architectures Integrating Sensors Technologies. Sensors. 2021;21:6303. doi: 10.3390/s21186303. PubMed DOI PMC

TAOS TSL230R Datasheet. [(accessed on 30 April 2023)]. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/153439/ETC1/TSL230R.html.

Centropen Security UV-SET 2699. [(accessed on 5 September 2023)]. Available online: https://www.centropen.cz/en/security-uv-set-2699-pg-1909-c-190/

Keresteš O., Pohanka M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors. 2023;13:599. doi: 10.3390/bios13060599. PubMed DOI PMC

Söderby K. Getting Started with the Arduino IoT Cloud. [(accessed on 20 September 2023)]. Available online: https://docs.arduino.cc/arduino-cloud/getting-started/iot-cloud-getting-started.

Söderby K. IoT Cloud Dashboards & Widgets. [(accessed on 20 September 2023)]. Available online: https://docs.arduino.cc/arduino-cloud/getting-started/dashboard-widgets.

Keresteš O. iPhone 12 Mini Cuvette Stand for Photogrammetry. National Institutes of Health; Bethesda, MD, USA: 2023. NIH 3D. DOI

Sun Z.W., Tian L.Y., Guo M., Xu X.T., Li Q., Weng H.B. A double-film screening card for rapid detection of organophosphate and carbamate pesticide residues by one step in vegetables and fruits. Food Control. 2017;81:23–29. doi: 10.1016/j.foodcont.2017.05.012. DOI

Guo X.S., Zhang X.Y., Cai Q., Shen T., Zhu S.M. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control. 2013;30:15–23. doi: 10.1016/j.foodcont.2012.07.015. DOI

Matoušek J., Fischer J., Cerman J. A new fluorimetric method for determination of submicrogram amounts of cholinesterase inhibitors. Chem. Pap. 1968;22:184–189.

Díaz A.N., Sánchez F.G., Bracho V., Lovillo J., Aguilar A. Enzymatic determination of fenitrothion by cholinesterase and acetylcholinesterase on fluorogenic substrates. Fresenius’ J. Anal. Chem. 1997;357:958–961. doi: 10.1007/s002160050281. DOI

Díaz A.N., Sánchez F.G., del Río V.B. Kinetic Enzymatic Determination of Chlorpyriphos in Apples. Anal. Lett. 1995;28:1071–1082. doi: 10.1080/00032719508002679. DOI

Valek T., Kostelnik A., Valkova P., Pohanka M. Indoxyl Acetate as a Substrate for Analysis of Lipase Activity. Int. J. Anal. Chem. 2019;2019:8538340. doi: 10.1155/2019/8538340. PubMed DOI PMC

Kostelnik A., Cegan A., Pohanka M. Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone. Int. J. Anal. Chem. 2017;2017:3712384. doi: 10.1155/2017/3712384. PubMed DOI PMC

Ramallo I.A., Garcia P., Furlan R.L.E. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors. J. Sep. Sci. 2015;38:3788–3794. doi: 10.1002/jssc.201500662. PubMed DOI

Antela K.U., Sáez-Hernández R., Cervera M.L., Morales-Rubio Á., Luque M.J. Development of an automated colorimeter controlled by Raspberry Pi4. Anal. Methods. 2023;15:512–518. doi: 10.1039/D2AY01532C. PubMed DOI

de Carvalho Oliveira G., Machado C.C.S., Inácio D.K., Silveira Petruci J.F.d., Silva S.G. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta. 2022;241:123244. doi: 10.1016/j.talanta.2022.123244. PubMed DOI

Singh H., Halder N., Singh B., Singh J., Sharma S., Shacham-Diamand Y. Smart Farming Revolution: Portable and Real-Time Soil Nitrogen and Phosphorus Monitoring for Sustainable Agriculture. Sensors. 2023;23:5914. doi: 10.3390/s23135914. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...