Indoxyl Acetate as a Substrate for Analysis of Lipase Activity

. 2019 ; 2019 () : 8538340. [epub] 20191201

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31885593

Lipases play a crucial role in metabolism of microbes, fungi, plants, and animals, and in analytical chemistry, they are often used in detection of fats and triglycerides. Determination of lipase activity is also important in toxicology, when lipase activity can be both increased and decreased by organophosphates and other pesticides and in medicine for diagnosis of heart diseases. The standard method for lipase activity determination is based on cleaving ester bonds in lipase buffer containing Tween. Our aim was to find a method with faster and more sensitive response. It is known that acetylcholinesterase belongs to the same group of hydrolases enzymes as lipases and it cleaves indoxyl acetate, so we assume indoxyl acetate could report a similar reaction with lipase. Our method is based on indoxyl acetate as a substrate for lipase, where indoxyl acetate is cleaved by lipase to indoxyl and acetate moiety and blue indigo is created. The method was optimized for different times and amount of enzyme and compared with the standard Tween assay. The calibration curve measured in reaction time 20 minutes with 10 μl of lipase exhibited the best analytical parameters, and it showed Michaelis-Menten response with the Michaelis-Menten constant equal to 8.72 mmol/l. The indoxyl acetate-based method showed faster and more sensitive response than the standard method for lipase activity determination, so it has great potential in biosensor construction and it could be used in industry, medicine, toxicology, and common practice where the activity of lipases is need to be measured.

Zobrazit více v PubMed

Bornscheuer U. T., Bessler C., Srinivas R., Hari Krishna S. Optimizing lipases and related enzymes for efficient application. Trends in Biotechnology. 2002;20(10):433–437. doi: 10.1016/s0167-7799(02)02046-2. PubMed DOI

Carlstrom N., Rai D., Shivam S., Shahane S., Mishra U. Lipases: sources, production, purification, and applications. Recent Patents on Biotechnology. 2018;12:1–12. doi: 10.2174/1872208312666181029093333. PubMed DOI

Treichel H., de Oliveira D., Mazutti M. A., Di Luccio M., Oliveira J. V. A review on microbial lipases production. Food and Bioprocess Technology. 2010;3(2):182–196. doi: 10.1007/s11947-009-0202-2. DOI

Widmann M., Juhl P. B., Pleiss J. Structural classification by the lipase engineering database: a case study of Candida antarctica lipase A. BMC Genomics. 2010;11(1):p. 123. doi: 10.1186/1471-2164-11-123. PubMed DOI PMC

dos Santos J. C. S., Garcia-Galan C., Rodrigues R. C., de Sant’ Ana H. B., Gonçalves L. R. B., Fernandez-Lafuente R. Improving the catalytic properties of immobilized lecitase via physical coating with ionic polymers. Enzyme and Microbial Technology. 2014;60:1–8. doi: 10.1016/j.enzmictec.2014.03.001. PubMed DOI

Mendes A. A., Oliveira P. C., de Castro H. F. Properties and biotechnological applications of porcine pancreatic lipase. Journal of Molecular Catalysis B: Enzymatic. 2012;78:119–134. doi: 10.1016/j.molcatb.2012.03.004. DOI

Reis P., Holmberg K., Watzke H., Leser M. E., Miller R. Lipases at interfaces: a review. Advances in Colloid and Interface Science. 2009;147-148:237–250. doi: 10.1016/j.cis.2008.06.001. PubMed DOI

Singh A. K., Mukhopadhyay M. Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology. 2012;166(2):486–520. doi: 10.1007/s12010-011-9444-3. PubMed DOI

Gurung N., Ray S., Bose S., Rai V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International. 2013;2013:18. doi: 10.1155/2013/329121.329121 PubMed DOI PMC

Hasan F., Shah A. A., Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology. 2006;39(2):235–251. doi: 10.1016/j.enzmictec.2005.10.016. DOI

Verma N., Thakur S., Bhatt A. Microbial lipases: industrial applications and properties (a review) International Research Journal of Biological Sciences. 2012;1(8):88–92.

Loli H., Narwal S., Saun N., Gupta R. Lipases in medicine: an overview. Mini-Reviews in Medicinal Chemistry. 2015;15(14):1209–1216. doi: 10.2174/1389557515666150709122722. PubMed DOI

Mead J., Irvine S., Ramji D. Lipoprotein lipase: structure, function, regulation, and role in disease. Journal of Molecular Medicine. 2002;80(12):753–769. doi: 10.1007/s00109-002-0384-9. PubMed DOI

Islam F., Tayyaba K., Hasan M. Organophosphate metasystox-induced increment of lipase activity and lipid peroxidation in cerebral hemisphere: diminution of lipids in discrete areas of the rat brain. Acta Pharmacologica et Toxicologica. 1983;53(2):121–124. doi: 10.1111/j.1600-0773.1983.tb01878.x. PubMed DOI

Nilsson-Ehle P., Carlstrom S., Belfrage P. Effects of ethanol intake on lipoprotein lipase activity in adipose tissue of fasting subjects. Lipids. 1978;13(6):433–437. doi: 10.1007/bf02533714. PubMed DOI

Sadurska B., Boguszewski B. Changes in lipoprotein lipase activity and plasma liver lipids in thiram intoxicated rats. Acta Biochimica Polonica. 1993;40(4):563–567. PubMed

Karami-Mohajeri S., Ahmadipour A., Rahimi H.-R., Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Archives of Industrial Hygiene and Toxicology. 2017;68(4):261–275. doi: 10.1515/aiht-2017-68-2989. PubMed DOI

Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–317. doi: 10.3390/bios4030301. PubMed DOI PMC

Rosman Y., Makarovsky I., Bentur Y., Shrot S., Dushnistky T., Krivoy A. Carbamate poisoning: treatment recommendations in the setting of a mass casualties event. The American Journal of Emergency Medicine. 2009;27(9):1117–1124. doi: 10.1016/j.ajem.2009.01.035. PubMed DOI

Purr A. Testpapier zum nachweis von esterasen in tierischen und pflanzlichen geweben und mikroorganismen. Food/Nahrung. 1965;9(4):445–454. doi: 10.1002/food.19650090408. DOI

Haslbeck F., Senser F., Grosch W. Nachweis niedriger lipase-aktivitäten in lebensmitteln. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1985;181(4):271–275. doi: 10.1007/BF01043084. PubMed DOI

Pohanka M., Hrabinova M., Kuca K., Simonato J.-P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. International Journal of Molecular Sciences. 2011;12(4):2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC

Pohanka M., Vlcek V. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs. Interdisciplinary Toxicology. 2014;7(4):215–218. doi: 10.2478/intox-2014-0031. PubMed DOI PMC

Arpigny J. L., Jaeger K. E. Bacterial lipolytic enzymes: classification and properties. Biochemical Journal. 1999;343(1):177–183. doi: 10.1042/bj3430177. PubMed DOI PMC

Brumlik M. J., Buckley J. T. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. Journal of Bacteriology. 1996;178(7):2060–2064. doi: 10.1128/jb.178.7.2060-2064.1996. PubMed DOI PMC

Dvir H., Silman I., Harel M., Rosenberry T. L., Sussman J. L. Acetylcholinesterase: from 3D structure to function. Chemico-Biological Interactions. 2010;187(1–3):10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC

Plou F. J., Ferrer M., Nuero O. M., et al. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnology Techniques. 1998;12(3):183–186. doi: 10.1023/A:1008809105270. DOI

Pettersen E. F., Goddard T. D., Huang C. C., et al. UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Eydoux C., Spinelli S., Davis T. L., et al. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation. Biochemistry. 2008;47(36):9553–9564. doi: 10.1021/bi8005576. PubMed DOI

Hernández-García S., García-García M. I., García-Carmona F. An improved method to measure lipase activity in aqueous media. Analytical Biochemistry. 2017;530:104–106. doi: 10.1016/j.ab.2017.05.012. PubMed DOI

Pencreac’h G., Baratti J. C. Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology. 1996;18(6):417–422. doi: 10.1016/0141-0229(95)00120-4. DOI

Manan F. M. A., Attan N., Zakaria Z., Keyon A. S. A., Wahab R. A. Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: process optimization and kinetic assessments. Enzyme and Microbial Technology. 2018;108:42–52. doi: 10.1016/j.enzmictec.2017.09.004. PubMed DOI

Vijayakumar K. R., Gowda L. R. Rice (Oryza sativa) lipase: molecular cloning, functional expression and substrate specificity. Protein Expression and Purification. 2013;88(1):67–79. doi: 10.1016/j.pep.2012.11.011. PubMed DOI

Kolling D. J., Bertoldo J. B., Brod F. C. A., Vernal J., Terenzi H., Arisi A. C. M. Biochemical and structural characterization of two site-directed mutants of Staphylococcus xylosus lipase. Molecular Biotechnology. 2010;46(2):168–175. doi: 10.1007/s12033-010-9282-5. PubMed DOI

Mosbah H., Sayari A., Bezzine S., Gargouri Y. Expression, purification, and characterization of His-tagged Staphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala. Protein Expression and Purification. 2006;47(2):516–523. doi: 10.1016/j.pep.2005.11.013. PubMed DOI

Jemel I., Fendri A., Gargouri Y., Bezzine S. Kinetic properties of dromedary pancreatic lipase: a comparative study on emulsified and monomolecular substrate. Colloids and Surfaces B: Biointerfaces. 2009;70(2):238–242. doi: 10.1016/j.colsurfb.2008.12.035. PubMed DOI

Zouari N., Miled N., Cherif S., Mejdoub H., Gargouri Y. Purification and characterization of a novel lipase from the digestive glands of a primitive animal: the scorpion. Biochimica et Biophysica Acta (BBA)—General Subjects. 2005;1726(1):67–74. doi: 10.1016/j.bbagen.2005.08.005. PubMed DOI

Kumar D., Kumar L., Nagar D. S., Raina C., Parshad R., Gupta V. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esteritication and resolution reactions. Scholars Research Library. 2012;4(4):1763–1770.

Samad M. Y. A., Razak C. N. A., Salleh A. B., Zin Wan Yunus W. M., Ampon K., Basri M. A plate assay for primary screening of lipase activity. Journal of Microbiological Methods. 1989;9(1):51–56. doi: 10.1016/0167-7012(89)90030-4. DOI

Sharma P., Sharma N., Pathania S., Handa S. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. Journal of Genetic Engineering and Biotechnology. 2017;15(2):369–377. doi: 10.1016/j.jgeb.2017.06.007. PubMed DOI PMC

Żądło-Dobrowolska A., Szczygieł M., Koszelewski D., Paprocki D., Ostaszewski R. Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Organic & Biomolecular Chemistry. 2016;14(38):9146–9150. doi: 10.1039/C6OB01488G. PubMed DOI

Zadlo A., Koszelewski D., Borys F., Ostaszewski R. Mixed carbonates as useful substrates for a fluorogenic assay for lipases and esterases. ChemBioChem. 2015;16(4):677–682. doi: 10.1002/cbic.201402528. PubMed DOI

Lanka S., Talluri V. R., Ganesh V., Latha J. N. L. Homology modeling, molecular dynamic simulations and docking studies of a new cold active extracellular lipase, EnL A from Emericella nidulans NFCCI 3643. Trends in Bioinformatics. 2015;8(2):37–51. doi: 10.3923/tb.2015.37.51. DOI

Moya-Salazarm J., Vértiz-Osores J., Jibaja S., et al. Fungi lipases homology modeling and molecular docking with fatty acids and tripalmitin of palm oil effluent. Archives of Organic and Inorganic Chemical Sciences. 2019;4(2):493–500.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...