Urine Test Strip Quantitative Assay with a Smartphone Camera

. 2024 ; 2024 () : 6004970. [epub] 20240318

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38529171

Urine test strips for urinalysis are a common diagnostic tool with minimal costs and are used in various situations including homecare and hospitalization. The coloration scaled by the naked eye is simple, but it is suitable for semiquantitative analysis only. In this paper, a colorimetric assay is developed based on a smartphone digital camera and urine test strips. Assays of pH, albumin, glucose, and lipase activity were performed as a tool for the diagnosis of aciduria, alkaluria, glycosuria, proteinuria, and leukocyturia. The RGB color channels were analyzed in the colorimetric assay, and the assay exerted good sensitivity, and all the particular diagnoses proved to be reliable. The limits of detection for glucose (0.11 mmol/L), albumin (0.15 g/L), and lipase (2.50 U/μL) were low enough to cover the expected physiological concentration, and the range for pH was also satisfactory. The urine test strips with a camera as an output detector proved applicability to spiked urine samples, and the results were also well in comparison to the standard assays which confirms the practical relevance of the presented findings.

Zobrazit více v PubMed

Haq K., Patel D. M. Urinalysis: interpretation and clinical correlations. Medical Clinics of North America . 2023;107(4):659–679. doi: 10.1016/j.mcna.2023.03.002. PubMed DOI

Echeverry G., Hortin G. L., Rai A. J. Introduction to urinalysis: historical perspectives and clinical application. Methods in Molecular Biology . 2010;641:1–12. doi: 10.1007/978-1-60761-711-2_1. PubMed DOI

Utsch B., Klaus G. Urinalysis in children and adolescents. Deutsches Ärzteblatt international . 2014;111(37):617–626. doi: 10.3238/arztebl.2014.0617. PubMed DOI PMC

Hitzeman N., Greer D., Md Mph, Carpio E. Office-based urinalysis: a comprehensive review. American Family Physician . 2022;106(1):27–35. PubMed

Morello M., Amoroso D., Losacco F., et al. Urine parameters in patients with COVID-19 infection. Life . 2023;13(8):p. 1640. doi: 10.3390/life13081640. PubMed DOI PMC

Pohanka M. Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. Reviews in Analytical Chemistry . 2020;39(1):20–30. doi: 10.1515/revac-2020-0111. DOI

Debnath S., Ghosh R., Pragti, Mukhopadhyay S., Baskaran K. V., Chatterjee P. B. Fabrication of a paper-based facile and low-cost microfluidic device and digital imaging technique for point-of-need monitoring of hypochlorite. The Analyst . 2023;148(17):4072–4083. doi: 10.1039/d3an00533j. PubMed DOI

Yadav A. S., Galogahi F. M., Tran D., et al. Precise, wide field, and low-cost imaging and analysis of core-shell beads for digital polymerase chain reaction. Lab on a Chip . 2023;23(15):3353–3360. doi: 10.1039/d3lc00337j. PubMed DOI

Wadie M., Abdel-Moety E. M., Rezk M. R., Marzouk H. M. Sustainable and smart HPTLC determination of silodosin and solifenacin using a constructed two illumination source chamber with a smartphone camera as a detector: comparative study with conventional densitometric scanner. Sustainable Chemistry and Pharmacy . 2023;33 doi: 10.1016/j.scp.2023.101095.101095 DOI

Deng W. L., Gou Y. T., Zhang Q., Li P., Wang P. A highly selective and sensitive peptide-based probe for the colorimetric and fluorescent detection of Fe3+, Al3+and Cr3+and its application in living cells imaging. Journal of Luminescence . 2024;269 doi: 10.1016/j.jlumin.2024.120442.120442 DOI

Zhou M., Zheng M. Y., Wang P., An Y. A novel ratiometric peptide-based fluorescent probe for sequential detection of Hg2+ and S2- ions and its application in living cells and zebrafish imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy . 2024;309 doi: 10.1016/j.saa.2023.123829.123829 PubMed DOI

Gou Y. T., Hou P. L., Wang Q. F., He F., Wang P., Yang X. P. A novel AIE peptide-based fluorescent probe for highly selective detection of mercury(II) ions and its application in food samples and cell imaging. Microchemical Journal . 2023;195 doi: 10.1016/j.microc.2023.109400.109400 DOI

Zhou M., Zheng M. Y., Xue S. R., Chen B., Wang P., An Y. A novel peptide-based fluorescent probe with large Stokes shift for simultaneous detection of zinc (II) and mercury (II): smartphone, test strips, living cells and real samples applications. Journal of Molecular Structure . 2023;1294 doi: 10.1016/j.molstruc.2023.136409.136409 DOI

Deng W. L., Wang Q. F., Xue S. R., Wang P. A colorimetric and fluorescent dual-signals probe based on Rhodamine B and tripeptide for highly sensitive detection of trivalent ions and its application in living cells imaging. Journal of Photochemistry and Photobiology A: Chemistry . 2023;445 doi: 10.1016/j.jphotochem.2023.115080.115080 DOI

Morin L. G., Prox J. Single glucose oxidase-peroxidase reagent for two-minute determination of serum glucose. Clinical Chemistry . 1973;19(9):959–962. doi: 10.1093/clinchem/19.9.959. PubMed DOI

Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry . 1976;72(1-2):248–254. doi: 10.1006/abio.1976.9999. PubMed DOI

Murthy V. V., Karmen A. A simple spectrophotometric assay for urinary leukocyte esterase activity. Biochemical Medicine and Metabolic Biology . 1988;40(3):260–268. doi: 10.1016/0885-4505(88)90127-2. PubMed DOI

Pohanka M., Hrabinova M., Kuca K., Simonato J. P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard ellman’s method. International Journal of Molecular Sciences . 2011;12(4):2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC

Pohanka M., Zakova J., Sedlacek I. Digital camera-based lipase biosensor for the determination of paraoxon. Sensors and Actuators B: Chemical . 2018;273:610–615. doi: 10.1016/j.snb.2018.06.084. DOI

Valek T., Kostelník A., Valkova P., Pohanka M. Indoxyl acetate as a substrate for analysis of lipase activity. International Journal of Analytical Chemistry . 2019;2019:7. doi: 10.1155/2019/8538340.8538340 PubMed DOI PMC

Berthelay S., Henriet M. T., Nguyen N. U., Dumoulin G., Coquard J. L. Effect of obesity on the elevation of renal glucose threshold. Studies during oral glucose tolerance tests. Diabete & Metabolisme . 1982;8(1):29–34. PubMed

Menzel R., Kaisaki P. J., Rjasanowski I., Heinke P., Kerner W., Menzel S. A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1α (HNF-1α) gene. Diabetic Medicine . 1998;15(10):816–820. doi: 10.1002/(sici)1096-9136(199810)15:10<816::aid-dia714>3.0.co;2-p. PubMed DOI

Hwang C., Lee W. J., Kim S. D., Park S., Kim J. H. Recent advances in biosensor technologies for point-of-care urinalysis. Biosensors . 2022;12(11):p. 1020. doi: 10.3390/bios12111020. PubMed DOI PMC

Lei R., Huo R., Mohan C. Current and emerging trends in point-of-care urinalysis tests. Expert Review of Molecular Diagnostics . 2020;20(1):69–84. doi: 10.1080/14737159.2020.1699063. PubMed DOI PMC

Kavuru V., Vu T., Karageorge L., Choudhury D., Senger R., Robertson J. Dipstick analysis of urine chemistry: benefits and limitations of dry chemistry-based assays. Postgraduate Medicine . 2020;132(3):225–233. doi: 10.1080/00325481.2019.1679540. PubMed DOI

Sequeira-Antunes B., Ferreira H. A. Urinary biomarkers and point-of-care urinalysis devices for early diagnosis and management of disease: a review. Biomedicines . 2023;11(4):p. 1051. doi: 10.3390/biomedicines11041051. PubMed DOI PMC

Vibulcharoenkitja P., Suginta W., Schulte A. Electrochemical N-Acetyl-β-D-glucosaminidase urinalysis: toward sensor chip-based diagnostics of kidney malfunction. Biomolecules . 2021;11(10):p. 1433. doi: 10.3390/biom11101433. PubMed DOI PMC

Andrianova M. S., Kuznetsov E. V., Grudtsov V. P., Kuznetsov A. E. CMOS-compatible biosensor for L-carnitine detection. Biosensors and Bioelectronics . 2018;119:48–54. doi: 10.1016/j.bios.2018.07.044. PubMed DOI

Sung W. H., Liu C. Y., Yang C. Y., et al. Urinalysis using a diaper-based testing device. Biosensors . 2020;10(8):p. 94. doi: 10.3390/bios10080094. PubMed DOI PMC

Tzianni Ε. I., Moutsios I., Moschovas D., et al. Smartphone paired SIM card-type integrated creatinine biosensor. Biosensors and Bioelectronics . 2022;207 doi: 10.1016/j.bios.2022.114204.114204 PubMed DOI

Takeda K., Kusuoka R., Inukai M., Igarashi K., Ohno H., Nakamura N. An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Biosensors and Bioelectronics . 2021;174 doi: 10.1016/j.bios.2020.112831.112831 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace