Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity

. 2023 May 31 ; 13 (6) : . [epub] 20230531

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37366964

Grantová podpora
SV/FVZ202103 Ministry of Education Youth and Sports

Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.

Zobrazit více v PubMed

Pundir C.S., Malik A., Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019;140:111348. doi: 10.1016/j.bios.2019.111348. PubMed DOI

Jain U., Saxena K., Hooda V., Balayan S., Singh A.P., Tikadar M., Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors—An update. Food Chem. 2022;371:131126. doi: 10.1016/j.foodchem.2021.131126. PubMed DOI

Liu D.M., Xu B.J., Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trac. Trend. Anal. Chem. 2021;142:116320. doi: 10.1016/j.trac.2021.116320. DOI

Pope C.N., Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018;153:205–216. doi: 10.1016/j.bcp.2018.01.044. PubMed DOI PMC

Choi R.J., Roy A., Jung H.J., Ali M.Y., Min B.-S., Park C.H., Yokozawa T., Fan T.-P., Choi J.S., Jung H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol. 2016;190:219–230. doi: 10.1016/j.jep.2016.06.013. PubMed DOI

Goud K.Y., Teymourian H., Sandhu S.S., Tostado N., Mishra R.K., Moore L.C., Harvey S.P., Wang J. OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sens. Actuators B Chem. 2020;320:128344. doi: 10.1016/j.snb.2020.128344. DOI

Pundir C.S., Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012;429:19–31. doi: 10.1016/j.ab.2012.06.025. PubMed DOI

Cao J., Wang M., Yu H., She Y., Cao Z., Ye J., Abd El-Aty A.M., Hacimuftuoglu A., Wang J., Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020;68:7298–7315. doi: 10.1021/acs.jafc.0c01962. PubMed DOI

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI

Sarkar B., Alam S., Rajib T.K., Islam S.S., Araf Y., Ullah M.A. Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: A computational approach. Egypt. J. Med. Hum. Genet. 2021;22:10. doi: 10.1186/s43042-020-00127-8. DOI

Kitowski I., Łopucki R., Stachniuk A., Fornal E. A pesticide banned in the European Union over a decade ago is still present in raptors in Poland. Environ. Conserv. 2020;47:310–314. doi: 10.1017/S037689292000034X. DOI

Ruiz-Suarez N., Boada L.D., Henriquez-Hernandez L.A., Gonzalez-Moreo F., Suarez-Perez A., Camacho M., Zumbado M., Almeida-Gonzalez M., Del Mar Travieso-Aja M., Luzardo O.P. Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain) Sci. Total Environ. 2015;505:1093–1099. doi: 10.1016/j.scitotenv.2014.10.093. PubMed DOI

de Siqueira A., Salvagni F.A., Yoshida A.S., Goncalves-Junior V., Calefi A.S., Fukushima A.R., Spinosa Hde S., Maiorka P.C. Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran. Res. Vet. Sci. 2015;102:142–149. doi: 10.1016/j.rvsc.2015.08.006. PubMed DOI

Zeljezic D., Vrdoljak A.L., Radic B., Fuchs N., Berend S., Orescanin V., Kopjar N. Comparative evaluation of acetylcholinesterase status and genome damage in blood cells of industrial workers exposed to carbofuran. Food Chem. Toxicol. 2007;45:2488–2498. doi: 10.1016/j.fct.2007.05.025. PubMed DOI

Di Nonno S., Ulber R. Portuino—A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter. Sensors. 2022;22:7916. doi: 10.3390/s22207916. PubMed DOI PMC

Anzalone G.C., Glover A.G., Pearce J.M. Open-source colorimeter. Sensors. 2013;13:5338–5346. doi: 10.3390/s130405338. PubMed DOI PMC

Hoang L.Q., Chi H.B.L., Khanh D.N.N., Vy N.T.T., Hanh P.X., Vu T.N., Lam H.T., Phuong N.T.K. Development of a low-cost colorimeter and its application for determination of environmental pollutants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;249:119212. doi: 10.1016/j.saa.2020.119212. PubMed DOI

Machado M.C., Vimbela G.V., Tripathi A. Creation of a low cost, low light bioluminescence sensor for real time biological nitrate sensing in marine environments. Environ. Technol. 2022;43:4002–4009. doi: 10.1080/09593330.2021.1939792. PubMed DOI

Kurata K. Open-source colorimeter assembled from laser-cut plates and plug-in circuits. Hardwarex. 2021;9:e00161. doi: 10.1016/j.ohx.2020.e00161. PubMed DOI PMC

Fu Q., Wu Z., Xu F., Li X., Yao C., Xu M., Sheng L., Yu S., Tang Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16:1927–1933. doi: 10.1039/C6LC00083E. PubMed DOI

Arafat Hossain M., Canning J., Ast S., Cook K., Rutledge P.J., Jamalipour A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt. Lett. 2015;40:1737–1740. doi: 10.1364/OL.40.001737. PubMed DOI

Bergua J.F., Alvarez-Diduk R., Idili A., Parolo C., Maymo M., Hu L., Merkoci A. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem. 2022;94:1271–1285. doi: 10.1021/acs.analchem.1c04491. PubMed DOI

Jeong H., Shin S., Hwang J., Kim Y.-J., Choi S. Open-Source Fluorescence Spectrometer for Noncontact Scientific Research and Education. J. Chem. Educ. 2021;98:3493–3501. doi: 10.1021/acs.jchemed.1c00560. DOI

Arduini F., Cinti S., Caratelli V., Amendola L., Palleschi G., Moscone D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019;126:346–354. doi: 10.1016/j.bios.2018.10.014. PubMed DOI

Caratelli V., Fegatelli G., Moscone D., Arduini F. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosens. Bioelectron. 2022;205:114119. doi: 10.1016/j.bios.2022.114119. PubMed DOI

Bilal S., Sami A.J., Hayat A., Fayyaz Ur Rehman M. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry. 2022;144:107999. doi: 10.1016/j.bioelechem.2021.107999. PubMed DOI

Ding J., Li B., Chen L., Qin W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew. Chem. Int. Ed. Engl. 2016;55:13033–13037. doi: 10.1002/anie.201606268. PubMed DOI

Mishra R.K., Hubble L.J., Martin A., Kumar R., Barfidokht A., Kim J., Musameh M.M., Kyratzis I.L., Wang J. Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sens. 2017;2:553–561. doi: 10.1021/acssensors.7b00051. PubMed DOI

Thet Tun W.S., Saenchoopa A., Daduang S., Daduang J., Kulchat S., Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. Rsc. Adv. 2023;13:9603–9614. doi: 10.1039/D3RA00512G. PubMed DOI PMC

Tao H., Liu F., Ji C., Wu Y., Wang X., Shi Q. A novel electrochemical sensing platform based on the esterase extracted from kidney bean for high-sensitivity determination of organophosphorus pesticides. Rsc. Adv. 2022;12:5265–5274. doi: 10.1039/D1RA08129B. PubMed DOI PMC

Fuyal M., Giri B. A Combined System of Paper Device and Portable Spectrometer for the Detection of Pesticide Residues. Food Analytical. Methods. 2020;13:1492–1502. doi: 10.1007/s12161-020-01770-y. DOI

Bueno D., Alonso G., Muñoz R., Marty J.L. Low-cost and portable absorbance measuring system to carbamate and organophosphate pesticides. Sens. Actuators B Chem. 2014;203:81–88. doi: 10.1016/j.snb.2014.06.093. DOI

Gong C., Fan Y., Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta. 2022;240:123145. doi: 10.1016/j.talanta.2021.123145. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced Ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI

Pohanka M., Hrabinova M., Kuca K., Simonato J.P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci. 2011;12:2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC

Keresteš O., Pohanka M. Enzymatic Biosensors for the Environmental Analysis of Pesticides. Chem. Listy. 2022;116:358–364. doi: 10.54779/chl20220358. DOI

Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI

No H.Y., Kim Y.A., Lee Y.T., Lee H.S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta. 2007;594:37–43. doi: 10.1016/j.aca.2007.05.008. PubMed DOI

Fu Q., Zhang C., Xie J., Li Z., Qu L., Cai X., Ouyang H., Song Y., Du D., Lin Y., et al. Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone. Anal. Chim. Acta. 2019;1092:126–131. doi: 10.1016/j.aca.2019.09.059. PubMed DOI

Pitschmann V., Matějovský L., Lunerová K., Dymák M., Urban M., Králík L. Detection Papers with Chromogenic Chemosensors for Direct Visual Detection and Distinction of Liquid Chemical Warfare Agents. Chemosensors. 2019;7:30. doi: 10.3390/chemosensors7030030. DOI

Pidany F., Kroustkova J., Al Mamun A., Suchankova D., Brazzolotto X., Nachon F., Chantegreil F., Dolezal R., Pulkrabkova L., Muckova L., et al. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids—Design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2023;252:115301. doi: 10.1016/j.ejmech.2023.115301. PubMed DOI

BCSengage Arduino Starter Kit Base Replacement. [(accessed on 30 April 2023)]. Available online: https://www.thingiverse.com/thing:1286765.

TAOS TSL230R Datasheet. [(accessed on 30 April 2023)]. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/153439/ETC1/TSL230R.html.

Ks0032 Keyestudio RGB LED Module. [(accessed on 18 April 2023)]. Available online: https://wiki.keyestudio.com/Ks0032_keyestudio_RGB_LED_Module.

Meyer A. High Sensitivity Light Sensor TSL230R + Arduino. [(accessed on 30 April 2023)]. Available online: http://adam-meyer.com/arduino/TSL230R.

Kerestes O., Pohanka M. Open Source Portable Photodetection Platform (OS3P) [(accessed on 30 April 2023)]. Available online: DOI

Carreres-Prieto D., García J.T., Cerdán-Cartagena F., Suardiaz-Muro J. Performing Calibration of Transmittance by Single RGB-LED within the Visible Spectrum. Sensors. 2020;20:3492. doi: 10.3390/s20123492. PubMed DOI PMC

Kostelnik A., Kopel P., Cegan A., Pohanka M. Construction of an Acetylcholinesterase Sensor Based on Synthesized Paramagnetic Nanoparticles, a Simple Tool for Neurotoxic Compounds Assay. Sensors. 2017;17:676. doi: 10.3390/s17040676. PubMed DOI PMC

Wei J.C., Wei B., Yang W., He C.W., Su H.X., Wan J.B., Li P., Wang Y.T. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food Chem. Toxicol. 2018;119:430–437. doi: 10.1016/j.fct.2017.12.019. PubMed DOI

Jeyapragasam T., Saraswathi R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sens. Actuators B Chem. 2014;191:681–687. doi: 10.1016/j.snb.2013.10.054. DOI

Qu Y., Sun Q., Xiao F., Shi G., Jin L. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry. 2010;77:139–144. doi: 10.1016/j.bioelechem.2009.08.001. PubMed DOI

Matejovsky L., Pitschmann V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC

Pohanka M., Zakova J. A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity. Sensors. 2021;21:1796. doi: 10.3390/s21051796. PubMed DOI PMC

Laganovska K., Zolotarjovs A., Vazquez M., Mc Donnell K., Liepins J., Ben-Yoav H., Karitans V., Smits K. Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. Hardwarex. 2020;7:e00108. doi: 10.1016/j.ohx.2020.e00108. PubMed DOI PMC

Alvarez J.L., Mozo J.D., Duran E. Analysis of Single Board Architectures Integrating Sensors Technologies. Sensors. 2021;21:6303. doi: 10.3390/s21186303. PubMed DOI PMC

Innok W., Hiranrat A., Chana N., Rungrotmongkol T., Kongsune P. In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment. J. Comput. Aided Mol. Des. 2021;35:325–336. doi: 10.1007/s10822-020-00372-4. PubMed DOI

Kikura-Hanajiri R., Kawamura M., Maruyama T., Kitajima M., Takayama H., Goda Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009;27:67–74. doi: 10.1007/s11419-009-0070-5. DOI

Omar F., Tareq A.M., Alqahtani A.M., Dhama K., Sayeed M.A., Emran T.B., Simal-Gandara J. Plant-Based Indole Alkaloids: A Comprehensive Overview from a Pharmacological Perspective. Molecules. 2021;26:2297. doi: 10.3390/molecules26082297. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity

. 2024 Mar 09 ; 24 (6) : . [epub] 20240309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...