New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29848955
PubMed Central
PMC6023030
DOI
10.3390/bios8020051
PII: bios8020051
Knihovny.cz E-zdroje
- Klíčová slova
- Ellman’s reagent, biosensor, cellulose filter paper, cholinesterase reaction, glass fibre filter paper,
- MeSH
- biosenzitivní techniky metody MeSH
- cholinesterasové inhibitory chemie MeSH
- nanovlákna chemie MeSH
- sklo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech Republic is the Detehit, which is based on a cholinesterase reaction that is assessed using a colour indicator-the Ellman's reagent-which is anchored on cellulose filter paper together with the substrate. With the use of this biosensor, detection is simple, quick, and sensitive. However, its disadvantage is that a less pronounced yellow discoloration occurs, especially under difficult light conditions. As a possible solution, a new indicator/substrate carrier has been designed. It is made of glass nanofibres, so the physical characteristics of the carrier positively influence reaction conditions, and as a result improve the colour response of the biosensor. The authors present and discuss some of the results of the study of this carrier under various experimental conditions. These findings have been used for the development of a modified Detehit biosensor.
Zobrazit více v PubMed
Pope C., Karanth S., Liu J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005;19:433–446. doi: 10.1016/j.etap.2004.12.048. PubMed DOI
Romano J.A., Lukey B.J., Salem H. Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics. CRC Press; Boca Raton, FL, USA: 2007.
Miao Y.Q., He N.Y., Zhu J.J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010;110:5216–5234. doi: 10.1021/cr900214c. PubMed DOI
Mesilaakso M. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods. John Wiley & Sons; Chichester, UK: 2005.
Halámek E., Kobliha Z., Pitschmann V. Analysis of Chemical Warfare Agents. University of Defence; Brno, Czech Republic: 2009.
Xu Z., Yao S., Wei Y., Zhou J., Zhang L., Wang C., Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 2008;19:1849–1855. doi: 10.1016/j.jasms.2008.07.025. PubMed DOI
Tang W., Wu J. Amperometric determination of organophosphorus pesticide by silver electrode using an acetylcholinesterase inhibition method. Anal. Methods. 2014;6:924–929. doi: 10.1039/C3AY41932K. DOI
Ringer J.M. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas. Eur. J. Mass Spectrom. 2013;19:175–185. doi: 10.1255/ejms.1222. PubMed DOI
Rosa La C., Pariente F., Hernández L., Lorenzo E. Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate. Anal. Chim. Acta. 1994;295:273–282. doi: 10.1016/0003-2670(94)80232-7. DOI
Abad J.M., Pariente F., Hernández L., Abruña H.D., Lorenzo E. Detection of organophosphorous and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 1998;70:2848–2855. doi: 10.1021/ac971374m. DOI
Kangas M.J., Burks R.M., Atwater J., Lukowicz R.M., Williams P., Holmes A.E. Colorimetric sensor arrays for detection and identification of chemical weapons and explosives. Crit. Rev. Anal. Chem. 2017;47:138–153. doi: 10.1080/10408347.2016.1233805. PubMed DOI PMC
Songa E.A., Okonkwo J.O. Recent approaches to improving selectivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta. 2016;155:289–304. doi: 10.1016/j.talanta.2016.04.046. PubMed DOI
Rodrigues N.F.M., Neto S.Y., Luz R.C.S., Damos F.S., Yamanaka H. Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles. Biosensors. 2018;8:16. doi: 10.3390/bios8010016. PubMed DOI PMC
Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors. 2014;4:301–317. doi: 10.3390/bios4030301. PubMed DOI PMC
Ellman G.L., Courtney D.K., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Pohanka M., Vlček V., Žďárová-Karasová J., Kuča K., Cabal J., Fusek J. Acetylcholinesterase based colorimetric dipsticks for military performance: Principles and construction. Adv. Mil. Technol. 2012;7:83–91.
Tušarová I., Halámek E., Orel J. Detekční Trubička Inhibitorů Cholinesteráz ve Vzduchu a Vodě. 285 242. C.Z. Patent. 1999 Apr 19;
Li Y., Hou C., Lei J., Deng B., Huang J., Yang M. Detection of organophosphorus pesticides with colorimetry and computer image analysis. Anal. Sci. 2016;32:719–724. doi: 10.2116/analsci.32.719. PubMed DOI
Bissbort S.H., Vermaak W.J.H., Elias J., Bester M.J., Dhatt G.S., Pum J.-K.W. Novel test and its automation for determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chem. Acta. 2001;303:139–145. doi: 10.1016/S0009-8981(00)00388-0. PubMed DOI
Pitschmann V., Matějovský L., Vetchý D., Kobliha Z. Enzymatic determination of anticholinesterases using a composite carriers. Anal. Lett. 2016;49:2418–2426. doi: 10.1080/00032719.2016.1151889. DOI
Pitschmann V., Matějovský L., Dymák M., Dropa T., Urban M., Vošahlíková I. Cholinesterase inhibitor biosensors. Ecol. Saf. 2017;11:18–23.
Hoskovcová M., Kobliha Z. Environmental Bosensors. InTech; Rijeka, Croatia: 2011. Modified cholinesterase technology in the construction of biosensors for organophosphorus nerve agents and pesticides detection; pp. 65–94.
Akbarian F., Lin A., Dunn B.S., Valentine J.S., Zink J.I. Spectroscopic determination cholinesterase activity and inhibition in sol-gel media. J. Sol-Gel Sci. Technol. 1997;8:1067–1070. doi: 10.1007/BF02436985. DOI
Barendsz A.W. A detection tube for cholinesterase inhibing compounds. Int. J. Environ. Anal. Chem. 1979;6:89–94. doi: 10.1080/03067317908071163. PubMed DOI
Pohanka M., Holas O. Evaluation of 2,6-dichlorophenolindophenol acetate as a substrate for acetylcholinesterase activity assay. J. Enzym. Inhib. Med. Chem. 2015;30:796–799. doi: 10.3109/14756366.2014.976564. PubMed DOI
Guo X., Zhang X., Cai Q., Shen T., Zhu S. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control. 2013;30:15–23. doi: 10.1016/j.foodcont.2012.07.015. DOI
Wang J.L., Xia Q., Zhang A.P., Hu X.Y., Lin C.M. Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α-naphtyl acetate esterase extracted from wheat flour. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 2012;13:267–273. PubMed PMC
Tušarová I., Halámek E. Biosenzor pro Detekci a Rozlišení Inhibitorů Cholinesteráz. 288 576. C.Z. Patent. 2001 May 22;