Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

. 2021 ; 12 () : 634511. [epub] 20210219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33737920

The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.

Bioinformatics Research Unit Riga Stradins University Riga Latvia

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Instituto de Salud Carlos 3 Madrid Spain

Centro de Matemática e Aplicações FCT UNL Caparica Portugal

Colorectal Cancer Group Institut de Recerca Biomedica de Bellvitge Barcelona Spain

Computational Biology Group Precision Nutrition and Cancer Research Program IMDEA Food Institute Madrid Spain

Consortium for Biomedical Research in Epidemiology and Public Health Barcelona Spain

Department of Biotechnology Institute of Molecular and Cell Biology University of Tartu Tartu Estonia

Department of Clinical Science University of Bergen Bergen Norway

Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona Spain

Department of Computer Networks and Systems Silesian University of Technology Gliwice Poland

Department of Computer Science University of Crete Heraklion Greece

Department of Computing University of Turku Turku Finland

Department of Information Systems Zefat Academic College Zefat Israel

Department of Mathematical Analysis and Applications of Mathematics Palacký University Olomouc Czechia

Department of Microbiology University of Innsbruck Innsbruck Austria

EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal

Faculty of Computer Science and Engineering Ss Cyril and Methodius University Skopje North Macedonia

Faculty of Engineering and Natural Sciences International University of Sarajevo Sarajevo Bosnia and Herzegovina

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Toruń Poland

Faculty of Technical Sciences University of Novi Sad Novi Sad Serbia

Galilee Digital Health Research Center Zefat Academic College Zefat Israel

Group for Microbiology and Microbial Biotechnology Department of Animal Science University of Ljubljana Ljubljana Slovenia

Institute of Genomics Estonian Genome Centre University of Tartu Tartu Estonia

Institute of Molecular and Cell Biology University of Tartu Tartu Estonia

NOVA Laboratory for Computer Science and Informatics FCT UNL Caparica Portugal

Oncology Data Analytics Program Catalan Institute of Oncology Barcelona Spain

School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland

South West University Neofit Rilski Blagoevgrad Bulgaria

Unidad de Gestión Clínica de Endocrinología y Nutrición Instituto de Investigación Biomédica de Málaga Hospital Clínico Universitario Virgen de la Victoria Universidad de Málaga Málaga Spain

Université Paris Saclay INRAE MGP Jouy en Josas France

University Sarajevo School of Science and Technology Sarajevo Bosnia and Herzegovina

Zobrazit více v PubMed

Ai D., Pan H., Han R., Li X., Liu G., Xia L. C. (2019). Using decision tree aggregation with random forest model to identify gut microbes associated with colorectal cancer. Genes 10:112. 10.3390/genes10020112 PubMed DOI PMC

Aitchison J. (1986). The Statistical Analysis of Compositional Data. London: Chapman and Hall.

Almeida A., Nayfach S., Boland M., Strozzi F. (2021). A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39 105–114 10.1038/s41587-020-0603-3 PubMed DOI PMC

Arango-Argoty G., Garner E., Pruden A., Heath L. S., Vikesland P., Zhang L. (2018). DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6:23. PubMed PMC

Arksey H., O’Malley L. (2005). Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8 19–32. 10.1080/1364557032000119616 DOI

Asgari E., Garakani K., McHardy A. C., Mofrad M. R. K. (2019). MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics 35:1082. 10.1093/bioinformatics/bty652 PubMed DOI PMC

Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25 25–29. 10.1038/75556 PubMed DOI PMC

Bai J., Hu Y., Bruner D. W. (2019). Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7-18 years old children from the American Gut Project. Pediatr. Obes. 14:e12480. 10.1111/ijpo.12480 PubMed DOI

Baldini F., Heinken A., Heirendt L., Magnusdottir S., Fleming R. M. T., Thiele I. (2019). The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35 2332–2334. 10.1093/bioinformatics/bty941 PubMed DOI PMC

Baxter N. T., Ruffin M. T., Rogers M. A., Schloss P. D. (2016). Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 8:37. 10.1186/s13073-016-0290-3 PubMed DOI PMC

Beck D., Foster J. A. (2014). Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS One 9:e87830. 10.1371/journal.pone.0087830 PubMed DOI PMC

Beck D., Foster J. A. (2015). Machine learning classifiers provide insight into the relationship between microbial communities and bacterial vaginosis. Biodata Min. 8:23. 10.1186/s13040-015-0055-3 PubMed DOI PMC

Berglund F., Marathe N. P., Österlund T., Bengtsson-Palme J., Kotsakis S., Flach C.-F., et al. (2017). Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5:134. 10.1186/s40168-017-0353-8 PubMed DOI PMC

Blaxter M., Mann J., Chapman T., Thomas F., Whitton C., Floyd R., et al. (2005). Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360 1935–1943. 10.1098/rstb.2005.1725 PubMed DOI PMC

Bonder M. J., Abeln S., Zaura E., Brandt B. W. (2012). Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics 28 2891–2897. 10.1093/bioinformatics/bts552 PubMed DOI

Borboudakis G., Tsamardinos I. (2019). Forward-backward selection with early dropping. J. Mach. Learn. Res. 20 276–314.

Borodulin K., Tolonen H., Jousilahti P., Jula A., Juolevi A., Koskinen S., et al. (2018). Cohort profile: the national FINRISK STUDY. Int. J. Epidemiol. 47 696i–696i. 10.1093/ije/dyx239 PubMed DOI

Braun T., Di Segni A., BenShoshan M., Neuman S., Levhar N., Bubis M., et al. (2019). Individualized dynamics in the gut microbiota precede Crohn’s disease flares. Am. J. Gastroenterol. 114 1142–1151. 10.14309/ajg.0000000000000136 PubMed DOI

Breiman L. (2001). Random forests. Mach. Learn. 45 5–32. 10.1023/A:1010933404324 DOI

Cai Y., Gu H., Kenney T. (2017). Learning microbial community structures with supervised and unsupervised non-negative matrix factorization. Microbiome 5:110. 10.1186/s40168-017-0323-1 PubMed DOI PMC

Cai Y., Sun Y. (2011). ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res. 39:e95. 10.1093/nar/gkr349 PubMed DOI PMC

Callahan B. J., McMurdie P. J., Holmes S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11 2639–2643. 10.1038/ismej.2017.119 PubMed DOI PMC

Caporaso J. G., Lauber C. L., Costello E. K., Berg-Lyons D., Gonzalez A., Stombaugh J., et al. (2011). Moving pictures of the human microbiome. Genome Biol. 12:R50. 10.1186/gb-2011-12-5-r50 PubMed DOI PMC

Chassagnon G., Vakalopolou M., Paragios N., Revel M.-P. (2020). Deep learning: definition and perspectives for thoracic imaging. Eur. Radiol. 30 2021–2030. 10.1007/s00330-019-06564-3 PubMed DOI

Chen L., Zhang Y. H., Huang T., Cai Y. D. (2016). Gene expression profiling gut microbiota in different races of humans. Sci. Rep. 6:23075. 10.1038/srep23075 PubMed DOI PMC

Chicco D., Jurman G. (2020). The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21:6. 10.1186/s12864-019-6413-7 PubMed DOI PMC

Chong J., Liu P., Zhou G., Xia J. (2020). Using microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15 799–821. 10.1038/s41596-019-0264-1 PubMed DOI

Cortes C., Vapnik V. (1995). Support-vector networks. Mach. Learn. 20 273–297. 10.1007/BF00994018 DOI

Costello E. K., Lauber C. L., Hamady M., Fierer N., Gordon J. I., Knight R. (2009). Bacterial community variation in human body habitats across space and time. Science 326 1694–1697. 10.1126/science.1177486 PubMed DOI PMC

Cui H., Zhang X. (2013). Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genom. 14:641. 10.1186/1471-2164-14-641 PubMed DOI PMC

David L. A., Materna A. C., Friedman J., Campos-Baptista M. I., Blackburn M. C., Perrotta A., et al. (2014). Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15:R89. 10.1186/gb-2014-15-7-r89 PubMed DOI PMC

Díez López C., Vidaki A., Ralf A., Montiel González D., Radjabzadeh D., Kraaij R., et al. (2019). Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials. Forensic Sci. Int. Genet. 41 72–82. 10.1016/j.fsigen.2019.03.015 PubMed DOI

DiGiulio D. B., Callahan B. J., McMurdie P. J., Costello E. K., Lyell D. J., Robaczewska A., et al. (2015). Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. U.S.A. 112 11060–11065. 10.1073/pnas.1502875112 PubMed DOI PMC

Ditzler G., Morrison J. C., Lan Y., Rosen G. L. (2015). Fizzy: feature subset selection for metagenomics. BMC Bioinform. 16:358. 10.1186/s12859-015-0793-8 PubMed DOI PMC

Douglas G. M., Hansen R., Jones C. M. A., Dunn K. A., Comeau A. M., Bielawski J. P., et al. (2018). Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease. Microbiome 6:13. 10.1186/s40168-018-0398-3 PubMed DOI PMC

Duvallet C., Gibbons S. M., Gurry T., Irizarry R. A., Alm E. J. (2017). Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8:1784. 10.1038/s41467-017-01973-8 PubMed DOI PMC

Eck A., Zintgraf L. M., de Groot E. F. J., de Meij T. G. J., Cohen T. S., Savelkoul P. H. M., et al. (2017). Interpretation of microbiota-based diagnostics by explaining individual classifier decisions. BMC Bioinform. 18:441. 10.1186/s12859-017-1843-1 PubMed DOI PMC

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Elekwachi C. O., Wang Z., Wu X., Rabee A., Forster R. J. (2017). Total rRNA-Seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized rna isolation method. Front. Microbiol. 8:1814. 10.3389/fmicb.2017.01814 PubMed DOI PMC

Escobar J. S., Klotz B., Valdes B. E., Agudelo G. M. (2014). The gut microbiota of colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14:311. 10.1186/s12866-014-0311-6 PubMed DOI PMC

Fabijanić M., Vlahoviček K. (2016). Big data, evolution, and metagenomes: predicting disease from gut microbiota codon usage profiles. Methods Mol. Biol. 1415 509–531. 10.1007/978-1-4939-3572-7_26 PubMed DOI

Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K., et al. (2016). Population-level analysis of gut microbiome variation. Science 352 560–564. 10.1126/science.aad3503 PubMed DOI

Faust K., Lahti L., Gonze D., de Vos W. M., Raes J. (2015). Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25 56–66. 10.1016/j.mib.2015.04.004 PubMed DOI

Faust K., Sathirapongsasuti J. F., Izard J., Segata N., Gevers D., Raes J., et al. (2012). Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8:e1002606. 10.1371/journal.pcbi.1002606 PubMed DOI PMC

Feng Q., Liang S., Jia H., Stadlmayr A., Tang L., Lan Z., et al. (2015). Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6:6528. 10.1038/ncomms7528 PubMed DOI

Filzmoser P., Hron K., Templ M. (2018). Applied Compositional Data Analysis. Cham: Springer.

Fioravanti D., Giarratano Y., Maggio V., Agostinelli C., Chierici M., Jurman G., et al. (2018). Phylogenetic convolutional neural networks in metagenomics. BMC Bioinform. 19:49. 10.1186/s12859-018-2033-5 PubMed DOI PMC

Flemer B., Warren R. D., Barrett M. P., Cisek K., Das A., Jeffery I. B., et al. (2017). The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67 1454–1463. 10.1136/gutjnl-2017-314814 PubMed DOI PMC

Franzosa E. A., McIver L. J., Rahnavard G., Thompson L. R., Schirmer M., Weingart G., et al. (2018). Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15 962–968. 10.1038/s41592-018-0176-y PubMed DOI PMC

Friedman J. H. (2001). Greedy function approximation: a gradient boosting machine. Ann. Stat. 29 1189–1232. 10.1214/aos/1013203451 DOI

Fukui H., Nishida A., Matsuda S., Kira F., Watanabe S., Kuriyama M., et al. (2020). Usefulness of machine learning-based gut microbiome analysis for identifying patients with irritable bowels syndrome. J. Clin. Med. Res. 9:403. 10.3390/jcm9082403 PubMed DOI PMC

Gajer P., Brotman R. M., Bai G., Sakamoto J., Schütte U. M. E., Zhong X., et al. (2012). Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4:132ra52. 10.1126/scitranslmed.3003605 PubMed DOI PMC

Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80. 10.1186/gb-2004-5-10-r80 PubMed DOI PMC

Gevers D., Kugathasan S., Denson L. A., Vázquez-Baeza Y., Van Treuren W., Ren B., et al. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microb. 15 382–392. 10.1016/j.chom.2014.02.005 PubMed DOI PMC

Gilbert J. A., Blaser M. J., Caporaso J. G., Jansson J. K., Lynch S. V., Knight R. (2018). Current understanding of the human microbiome. Nat. Med. 24 392–400. 10.1038/nm.4517 PubMed DOI PMC

Gloor G. B., Macklaim J. M., Pawlowsky-Glahn V., Egozcue J. J. (2017). Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8:2224. 10.3389/fmicb.2017.02224 PubMed DOI PMC

Gonzalez A., Navas-Molina J. A., Kosciolek T., McDonald D., Vázquez-Baeza Y., Ackermann G., et al. (2018). Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15 796–798. 10.1038/s41592-018-0141-9 PubMed DOI PMC

Goodrich J. K., Waters J. L., Poole A. C., Sutter J. L., Koren O., Blekhman R., et al. (2014). Human genetics shape the gut microbiome. Cell 159 789–799. 10.1016/j.cell.2014.09.053 PubMed DOI PMC

Gupta A., Dhakan D. B., Maji A., Saxena R., Vishnu Prasoodanan P. K., Mahajan S., et al. (2019). Association of Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 4:e00438-19. 10.1128/msystems.00438-19 PubMed DOI PMC

Hacılar H., Nalbantoğlu O. U., Bakir-Güngör B. (2018). “Machine learning analysis of inflammatory bowel disease-associated metagenomics dataset,” in Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo.

Hagopian W. A., Erlich H., Lernmark A., Rewers M., Ziegler A. G., Simell O., et al. (2011). The environmental determinants of diabetes in the young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr. Diabetes 12 733–743. 10.1111/j.1399-5448.2011.00774.x PubMed DOI PMC

Halfvarson J., Brislawn C. J., Lamendella R., Vázquez-Baeza Y., Walters W. A., Bramer L. M., et al. (2017). Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2:17004. 10.1038/nmicrobiol.2017.4 PubMed DOI PMC

Hansen R., Russell R. K., Reiff C., Louis P., McIntosh F., Berry S. H., et al. (2012). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am. J. Gastroenterol. 107 1913–1922. 10.1038/ajg.2012.335 PubMed DOI

Hanski I., von Hertzen L., Fyhrquist N., Koskinen K., Torppa K., Laatikainen T., et al. (2012). Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. U.S.A. 109 8334–8339. 10.1073/pnas.1205624109 PubMed DOI PMC

Hastie T., Tibshirani R., Friedman J. (2009). The Elements of Statistical Learning. New York, NY: Springer, 10.1007/978-0-387-84858-7 DOI

Heirendt L., Arreckx S., Pfau T., Mendoza S. N., Richelle A., Heinken A., et al. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14 639–702. 10.1038/s41596-018-0098-2 PubMed DOI PMC

Hoffman J. I. E. (2019). “Logistic regression,” in Basic Biostatistics for Medical and Biomedical Practitioners, ed. Hoffman J. I. E. (Amsterdam: Elsevier; ), 581–589. 10.1016/b978-0-12-817084-7.00033-4 DOI

Hollister E. B., Oezguen N., Chumpitazi B. P., Luna R. A., Weidler E. M., Rubio-Gonzales M., et al. (2019). Leveraging human microbiome features to diagnose and stratify children with irritable bowel syndrome. J. Mol. Diagn. 21 449–461. 10.1016/j.jmoldx.2019.01.006 PubMed DOI PMC

Holmes I., Harris K., Quince C. (2012). Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One 7:e30126. 10.1371/journal.pone.0030126 PubMed DOI PMC

Hughes D. A., Bacigalupe R., Wang J., Rühlemann M. C., Tito R. Y., Falony G., et al. (2020). Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5 1079–1087. 10.1038/s41564-020-0743-8 PubMed DOI PMC

Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486 207–214. 10.1038/nature11234 PubMed DOI PMC

Ioannidis J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology 19 640–648. 10.1097/EDE.0b013e31818131e7 PubMed DOI

Jang B.-S., Chang J. H., Chie E. K., Kim K., Park J. W., Kim M. J., et al. (2020). Gut microbiome composition is associated with a pathologic response after preoperative chemoradiation in patients with rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 107 736–746. 10.1016/j.ijrobp.2020.04.015 PubMed DOI

Jensen L. J., Julien P., Kuhn M., von Mering C., Muller J., Doerks T., et al. (2007). eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36 D250–D254. 10.1093/nar/gkm796 PubMed DOI PMC

Jiang P., Green S. J., Chlipala G. E., Turek F. W., Vitaterna M. H. (2019). Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7:113. 10.1186/s40168-019-0724-4 PubMed DOI PMC

Johnson H. R., Trinidad D. D., Guzman S., Khan Z., Parziale J. V., DeBruyn J. M., et al. (2016). A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS One 11:e0167370. 10.1371/journal.pone.0167370 PubMed DOI PMC

Kanehisa M., Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 27–30. 10.1093/nar/28.1.27 PubMed DOI PMC

Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res. 32 D277–D280. 10.1093/nar/gkh063 PubMed DOI PMC

Kashyap P. C., Chia N., Nelson H., Segal E., Elinav E. (2017). Microbiome at the frontier of personalized medicine. Mayo Clin. Proc. 92 1855–1864. 10.1016/j.mayocp.2017.10.004 PubMed DOI PMC

Kharrat N., Assidi M., Abu-Elmagd M., Pushparaj P. N., Alkhaldy A., Arfaoui L., et al. (2019). Data mining analysis of human gut microbiota links Fusobacterium spp. with colorectal cancer onset. Bioinformation 15 372–379. 10.6026/97320630015372 PubMed DOI PMC

Knights D., Costello E. K., Knight R. (2011). Supervised classification of human microbiota. FEMS Microbiol. Rev. 35 343–359. 10.1111/j.1574-6976.2010.00251.x PubMed DOI

Koohi-Moghadam M., Borad M. J., Tran N. L., Swanson K. R., Boardman L. A., Sun H., et al. (2019). MetaMarker: a pipeline for de novo discovery of novel metagenomic biomarkers. Bioinformatics 35 3812–3814. 10.1093/bioinformatics/btz123 PubMed DOI PMC

Koren O., Knights D., Gonzalez A., Waldron L., Segata N., Knight R., et al. (2013). A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9:e1002863. 10.1371/journal.pcbi.1002863 PubMed DOI PMC

Kuczynski J., Stombaugh J., Walters W. A., González A., Gregory Caporaso J., Knight R. (2012). Using QIIME to Analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. 27 1E.5.1–1E.5.20. 10.1002/9780471729259.mc01e05s27 PubMed DOI PMC

La Rosa P. S., Warner B. B., Zhou Y., Weinstock G. M., Sodergren E., Hall-Moore C. M., et al. (2014). Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. U.S.A. 111 12522–12527. 10.1073/pnas.1409497111 PubMed DOI PMC

Lagani V., Athineou G., Farcomeni A., Tsagris M., Tsamardinos I. (2017). Feature selection with the R Package MXM: discovering statistically equivalent feature subsets. J. Statist. Softw. 80 1–25. 10.18637/jss.v080.i07 DOI

Lahti L., Salonen A., Kekkonen R. A., Salojarvi J., Jalanka-Tuovinen J., Palva A., et al. (2013). Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ 1:e32. 10.7717/peerj.32 PubMed DOI PMC

Lakin S. M., Dean C., Noyes N. R., Dettenwanger A., Ross A. S., Doster E., et al. (2017). MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 45 D574–D580. 10.1093/nar/gkw1009 PubMed DOI PMC

Langille M. G. I., Zaneveld J., Gregory Caporaso J., McDonald D., Knights D., Reyes J. A., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 814–821. 10.1038/nbt.2676 PubMed DOI PMC

LaPierre N., Ju C. J.-T., Zhou G., Wang W. (2019). MetaPheno: a critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods 166 74–82. 10.1016/j.ymeth.2019.03.003 PubMed DOI PMC

Larsen P. E., Dai Y. (2015). Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience 4:42. 10.1186/s13742-015-0084-3 PubMed DOI PMC

Le V., Quinn T. P., Tran T., Venkatesh S. (2020). Deep in the bowel: highly interpretable neural encoder-decoder networks predict gut metabolites from gut microbiome. BMC Genom. 21:256. 10.1186/s12864-020-6652-7 PubMed DOI PMC

Le Goallec A., Tierney B. T., Luber J. M., Cofer E. M., Kostic A. D., Patel C. J. (2020). A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. PLoS Comput. Biol. 16:e1007895. 10.1371/journal.pcbi.1007895 PubMed DOI PMC

Li J., Jia H., Cai X., Zhong H., Feng Q., Sunagawa S., et al. (2014). An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32 834–841. 10.1038/nbt.2942 PubMed DOI

Li R., Zhu H., Ruan J., Qian W., Fang X., Shi Z., et al. (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20 265–272. 10.1101/gr.097261.109 PubMed DOI PMC

Liu Y., Guo J., Zhu H. (2011). “Gene prediction in metagenomic fragments based on the SVM algorithm,” in Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, 10.1109/bmei.2011.6098588 DOI

Liu Z., Hsiao W., Cantarel B. L., Drábek E. F., Fraser-Liggett C. (2011). Sparse distance-based learning for simultaneous multiclass classification and feature selection of metagenomic data. Bioinformatics 27 3242–3249. 10.1093/bioinformatics/btr547 PubMed DOI PMC

Liu Y., Meric G., Havulinna A. S., Teo S. M., Ruuskanen M., Sanders J., et al. (2020). Early prediction of liver disease using conventional risk factors and gut microbiome-augmented gradient boosting. medRxiv [Preprint], 10.1101/2020.06.24.20138933 PubMed DOI PMC

Lo C., Marculescu R. (2019). MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks. BMC Bioinform. 20:314. 10.1186/s12859-019-2833-2 PubMed DOI PMC

Lopez Pinaya W. H., Vieira S., Garcia-Dias R., Mechelli A. (2020). “Convolutional neural networks,” in Machine Learning, eds Mechelli A., Vieira S. (Amsterdam: Elsevier; ), 173–191. 10.1016/b978-0-12-815739-8.00010-9 DOI

Lozupone C., Lladser M. E., Knights D., Stombaugh J., Knight R. (2011). UniFrac: an effective distance metric for microbial community comparison. ISME J. 5 169–172. 10.1038/ismej.2010.133 PubMed DOI PMC

Lugo-Martinez J., Ruiz-Perez D., Narasimhan G., Bar-Joseph Z. (2019). Dynamic interaction network inference from longitudinal microbiome data. Microbiome 7:54. 10.1186/s40168-019-0660-3 PubMed DOI PMC

Madeira S. C., Oliveira A. L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1 24–45. 10.1109/TCBB.2004.2 PubMed DOI

McDonald D., Hyde E., Debelius J. W., Morton J. T., Gonzalez A., Ackermann G., et al. (2018). American gut: an open platform for citizen science microbiome research. mSystems 3:e0031-18. 10.1128/mSystems.00031-18 PubMed DOI PMC

Mitchell A. L., Almeida A., Beracochea M., Boland M., Burgin J., Cochrane G., et al. (2020). MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48 D570–D578. 10.1093/nar/gkz1035 PubMed DOI PMC

Mitchell A. L., Scheremetjew M., Denise H., Potter S., Tarkowska A., Qureshi M., et al. (2018). EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46 D726–D735. 10.1093/nar/gkx967 PubMed DOI PMC

Mohammed A., Guda C. (2015). Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism. BMC Genomics 16(Suppl. 7):S16. 10.1186/1471-2164-16-S7-S16 PubMed DOI PMC

Moher D., Liberati A., Tetzlaff J., Altman D. G., and PRISMA Group (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8 336–341. 10.1016/j.ijsu.2010.02.007 PubMed DOI

Moher D., Stewart L., Shekelle P. (2015). All in the family: systematic reviews, rapid reviews, scoping reviews, realist reviews, and more. Syst. Rev. 4:183. 10.1186/s13643-015-0163-7 PubMed DOI PMC

Moreno-Indias I., Lahti L., Nedyalkova M., Elbere I., Roshchupkin G., Adilovic M., et al. (2021). Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12:635781. 10.3389/fmicb.2021.635781 PubMed DOI PMC

Nielsen H. B., Almeida M., Juncker A. S., Rasmussen S., Li J., Sunagawa S., et al. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32 822–828. 10.1038/nbt.2939 PubMed DOI

Ning J., Beiko R. G. (2015). Phylogenetic approaches to microbial community classification. Microbiome 3:47. 10.1186/s40168-015-0114-5 PubMed DOI PMC

Noguchi H., Park J., Takagi T. (2006). MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34 5623–5630. 10.1093/nar/gkl723 PubMed DOI PMC

Oh M., Zhang L. (2020). DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Rep. 10:6026. 10.1038/s41598-020-63159-5 PubMed DOI PMC

Oudah M., Henschel A. (2018). Taxonomy-aware feature engineering for microbiome classification. BMC Bioinform. 19:227. 10.1186/s12859-018-2205-3 PubMed DOI PMC

Papoutsoglou G., Athineou G., Lagani V., Xanthopoulos I., Schmidt A., Éliás S., et al. (2017). SCENERY: a web application for (causal) network reconstruction from cytometry data. Nucleic Acids Res. 45 W270–W275. 10.1093/nar/gkx448 PubMed DOI PMC

Pascal V., Pozuelo M., Borruel N., Casellas F., Campos D., Santiago A., et al. (2017). A microbial signature for Crohn’s disease. Gut 66 813–822. 10.1136/gutjnl-2016-313235 PubMed DOI PMC

Pasolli E., Schiffer L., Manghi P., Renson A., Obenchain V., Truong D. T., et al. (2017). Accessible, curated metagenomic data through ExperimentHub. Nat. Methods 14 1023–1024. 10.1038/nmeth.4468 PubMed DOI PMC

Pasolli E., Truong D. T., Malik F., Waldron L., Segata N. (2016). Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12:e1004977. 10.1371/journal.pcbi.1004977 PubMed DOI PMC

Pawlowsky-Glahn V., Egozcue J. J., Tolosana-Delgado R. (2015). Modeling and Analysis of Compositional Data. Chichester: John Wiley & Sons.

Pereira P., Aho V., Arola J., Boyd S., Jokelainen K., Paulin L., et al. (2017). Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. PLoS One 12:e0182924. 10.1371/journal.pone.0182924 PubMed DOI PMC

Petersen C., Round J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16 1024–1033. 10.1111/cmi.12308 PubMed DOI PMC

Platt J. C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Technical Report MSR-TR-98-14, Microsoft Research.

Plaza Oñate F., Le Chatelier E., Almeida M., Cervino A. C. L., Gauthier F., Magoulès F., et al. (2019). MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 35 1544–1552. 10.1093/bioinformatics/bty830 PubMed DOI PMC

Purcell R. V., Visnovska M., Biggs P. J., Schmeier S., Frizelle F. A. (2017). Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 7:11590. 10.1038/s41598-017-11237-6 PubMed DOI PMC

Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59–65. 10.1038/nature08821 PubMed DOI PMC

Quinn T. P., Erb I. (2020). Interpretable log contrasts for the classification of health biomarkers: a new approach to balance selection. mSystems 5:e00230-19. 10.1128/mSystems.00230-19 PubMed DOI PMC

Quinn T. P., Erb I., Richardson M. F., Crowley T. M. (2018). Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34 2870–2878. 10.1093/bioinformatics/bty175 PubMed DOI PMC

Rahman S. F., Olm M. R., Morowitz M. J., Banfield J. F. (2017). Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. bioRxiv [Preprint], 10.1101/185348 PubMed DOI PMC

Randolph T. W., Zhao S., Copeland W., Hullar M., Shojaie A. (2018). Kernel-penalized regression for analysis of microbiome data. Ann. Appl. Stat. 12 540–566. 10.1214/17-AOAS1102 PubMed DOI PMC

Richards A. L., Muehlbauer A. L., Alazizi A., Burns M. B., Findley A., Messina F., et al. (2019). Gut microbiota has a widespread and modifiable effect on host gene regulation. mSystems 4:e00323-18. 10.1128/mSystems.00323-18 PubMed DOI PMC

Riley P. (2019). Three pitfalls to avoid in machine learning. Nature 572 27–29. 10.1038/d41586-019-02307-y PubMed DOI

Rivera-Pinto J., Egozcue J. J., Pawlowsky-Glahn V., Paredes R., Noguera-Julian M., Calle M. L. (2018). Balances: a new perspective for microbiome analysis. mSystems 3:e0053-18. 10.1128/mSystems.00053-18 PubMed DOI PMC

Roguet A., Eren A. M., Newton R. J., McLellan S. L. (2018). Fecal source identification using random forest. Microbiome 6:185. 10.1186/s40168-018-0568-3 PubMed DOI PMC

Ross A. A., Doxey A. C., Neufeld J. D. (2017). The skin microbiome of cohabiting couples. mSystems 2:e0043-17. 10.1128/mSystems.00043-17 PubMed DOI PMC

Ross M. C., Muzny D. M., McCormick J. B., Gibbs R. A., Fisher-Hoch S. P., Petrosino J. F. (2015). 16S gut community of the cameron county hispanic cohort. Microbiome 3:7. 10.1186/s40168-015-0072-y PubMed DOI PMC

Russell S. J., Norvig P. (2016). Artificial Intelligence: a Modern Approach. Malaysia: Pearson Education Limited.

Ruuskanen M. O., Åberg F., Männistö V., Havulinna A. S., Méric G., Liu Y., et al. (2020). Links between gut microbiome composition and fatty liver disease in a large population sample. medRxiv [Preprint], 10.1101/2020.07.30.20164962 PubMed DOI PMC

Ryan F. J., Ahern A. M., Fitzgerald R. S., Laserna-Mendieta E. J., Power E. M., Clooney A. G., et al. (2020). Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 11:1512. 10.1038/s41467-020-15342-5 PubMed DOI PMC

Sanna S., van Zuydam N. R., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U., et al. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51 600–605. 10.1038/s41588-019-0350-x PubMed DOI PMC

Saulnier D. M., Riehle K., Mistretta T.-A., Diaz M.-A., Mandal D., Raza S., et al. (2011). Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141 1782–1791. 10.1053/j.gastro.2011.06.072 PubMed DOI PMC

Scholz M., Ward D. V., Pasolli E., Tolio T., Zolfo M., Asnicar F., et al. (2016). Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat. Methods 13 435–438. 10.1038/nmeth.3802 PubMed DOI

Schubert A. M., Rogers M. A. M., Ring C., Mogle J., Petrosino J. P., Young V. B., et al. (2014). Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. mBio 5:e001021-14. 10.1128/mBio.01021-14 PubMed DOI PMC

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. 10.1186/gb-2011-12-6-r60 PubMed DOI PMC

Segata N., Waldron L., Ballarini A., Narasimhan V., Jousson O., Huttenhower C. (2012). Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9 811–814. 10.1038/nmeth.2066 PubMed DOI PMC

Seo M., Heo J., Yoon J., Kim S.-Y., Kang Y.-M., Yu J., et al. (2017). Methanobrevibacter attenuation via probiotic intervention reduces flatulence in adult human: a non-randomised paired-design clinical trial of efficacy. PLoS One 12:e0184547. 10.1371/journal.pone.0184547 PubMed DOI PMC

Silverman J. D., Washburne A. D., Mukherjee S., David L. A. (2017). A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6:e21887. 10.7554/eLife.21887 PubMed DOI PMC

Sokol H., Leducq V., Aschard H., Pham H.-P., Jegou S., Landman C., et al. (2017). Fungal microbiota dysbiosis in IBD. Gut 66 1039–1048. 10.1136/gutjnl-2015-310746 PubMed DOI PMC

Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Statnikov A., Henaff M., Narendra V., Konganti K., Li Z., Yang L., et al. (2013). A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome 1:11. 10.1186/2049-2618-1-11 PubMed DOI PMC

Sze M. A., Schloss P. D. (2016). Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7:e01018-16. 10.1128/mBio.01018-16 PubMed DOI PMC

Tap J., Derrien M., Tornblom H., Brazeilles R., Cools-Portier S., Dore J., et al. (2017). Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152 111–123.e8. 10.1053/j.gastro.2016.09.049 PubMed DOI

Telalovic H. J., Azra M. (2020). Using data science for medical decision making case: role of gut microbiome in multiple sclerosis. BMC Med. Inform. Decis. Mak. 20:262. 10.1186/s12911-020-01263-2 PubMed DOI PMC

Thomas A. M., Manghi P., Asnicar F., Pasolli E., Armanini F., Zolfo M., et al. (2019). Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25 667–678. 10.1038/s41591-019-0405-7 PubMed DOI PMC

Travisany D., Galarce D., Maass A., Assar R. (2015). “predicting the metagenomics content with multiple CART trees,” in Mathematical Models in Biology: Bringing Mathematics to Life, eds Zazzu V., Ferraro M. B., Guarracino M. R. (Cham: Springer International Publishing; ), 145–160. 10.1007/978-3-319-23497-7_11 DOI

Truong D. T., Franzosa E. A., Tickle T. L., Scholz M., Weingart G., Pasolli E., et al. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12 902–903. 10.1038/nmeth.3589 PubMed DOI

Tsamardinos I., Charonyktakis P., Lakiotaki K., Borboudakis G., Zenklusen J. C., Juhl H., et al. (2020). Just add data: automated predictive modeling and biosignature discovery. bioRxiv [Preprint], 10.1101/2020.05.04.075747 PubMed DOI PMC

Tsamardinos I., Greasidou E., Borboudakis G. (2018). Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Mach. Learn. 107 1895–1922. 10.1007/s10994-018-5714-4 PubMed DOI PMC

Tsamardinos I., Rakhshani A., Lagani V. (2015). Performance-estimation properties of cross-validationbased protocols with simultaneous hyper-parameter optimization. Int. J. Artif. Intell. Tools 24 1–14. 10.1007/978-3-319-07064-3_1 DOI

Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I. (2007). The human microbiome project. Nature 449 804–810. 10.1038/nature06244 PubMed DOI PMC

Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031. 10.1038/nature05414 PubMed DOI

Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:6ra14. 10.1126/scitranslmed.3000322 PubMed DOI PMC

Vangay P., Hillmann B. M., Knights D. (2019). Microbiome Learning Repo (ML Repo): a public repository of microbiome regression and classification tasks. Gigascience 8:giz042. 10.1093/gigascience/giz042 PubMed DOI PMC

Vatanen T., Franzosa E. A., Schwager R., Tripathi S., Arthur T. D., Vehik K., et al. (2018). The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562 589–594. 10.1038/s41586-018-0620-2 PubMed DOI PMC

Vervier K., Mahé P., Tournoud M., Veyrieras J.-B., Vert J.-P. (2016). Large-scale machine learning for metagenomics sequence classification. Bioinformatics 32 1023–1032. 10.1093/bioinformatics/btv683 PubMed DOI PMC

Wang H., Marcišauskas S., Sánchez B. J., Domenzain I., Hermansson D., Agren R., et al. (2018). RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 14:e1006541. 10.1371/journal.pcbi.1006541 PubMed DOI PMC

Wassan J. T., Wang H., Browne F., Zheng H. (2018a). A comprehensive study on predicting functional role of metagenomes using machine learning methods. IEEE/ACM Trans. Comput. Biol. Bioinform. 16 751–763. 10.1109/TCBB.2018.2858808 PubMed DOI

Wassan J. T., Wang H., Browne F., Zheng H. (2018b). “PAAM-ML: a novel phylogeny and abundance aware machine learning modelling approach for microbiome classification,” in Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, 10.1109/BIBM.2018.8621382 DOI

Wassan J. T., Wang H., Browne F., Zheng H. (2019). Phy-PMRFI: phylogeny-aware prediction of metagenomic functions using random forest feature importance. IEEE Trans. Nanobiosci. 18 273–282. 10.1109/tnb.2019.2912824 PubMed DOI

Weiss S., Xu Z. Z., Peddada S., Amir A., Bittinger K., Gonzalez A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. 10.1186/s40168-017-0237-y PubMed DOI PMC

Wen C., Zheng Z., Shao T., Liu L., Xie Z., Le Chatelier E., et al. (2017). Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 18:142. 10.1186/s13059-017-1271-6 PubMed DOI PMC

Werner J. J., Koren O., Hugenholtz P., DeSantis T. Z., Walters W. A., Caporaso J. G., et al. (2012). Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 6 94–103. 10.1038/ismej.2011.82 PubMed DOI PMC

Winand R., Bogaerts B., Hoffman S., Lefevre L., Delvoye M., Van Braekel J., et al. (2020). Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (Illumina) and third (oxford nanopore technologies) generation sequencing technologies. Int. J. Mol. Sci. 21:298. PubMed PMC

Wingfield B., Coleman S., McGinnity T. M., Bjourson A. J. (2016). “A metagenomic hybrid classifier for paediatric inflammatory bowel disease,” in Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, 10.1109/ijcnn.2016.7727318 DOI

Wirbel J., Pyl P. T., Kartal E., Zych K., Kashani A., Milanese A., et al. (2019). Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25 679–689. 10.1038/s41591-019-0406-6 PubMed DOI PMC

Wu C., Chen J., Kim J., Pan W. (2016). An adaptive association test for microbiome data. Genome Med. 8:56. 10.1186/s13073-016-0302-3 PubMed DOI PMC

Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S. A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334 105–108. 10.1126/science.1208344 PubMed DOI PMC

Wu H., Cai L., Li D., Wang X., Zhao S., Zou F., et al. (2018). Metagenomics biomarkers selected for prediction of three different diseases in chinese population. Biomed Res. Int. 2018:2936257. 10.1155/2018/2936257 PubMed DOI PMC

Xia L. C., Cram J. A., Chen T., Fuhrman J. A., Sun F. (2011). Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One 6:e27992. 10.1371/journal.pone.0027992 PubMed DOI PMC

Xie J., Ma A., Fennell A., Ma Q., Zhao J. (2019). It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data. Brief. Bioinform. 20 1449–1464. 10.1093/bib/bby014 PubMed DOI PMC

Yachida S., Mizutani S., Shiroma H., Shiba S., Nakajima T., Sakamoto T., et al. (2019). Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25 968–976. 10.1038/s41591-019-0458-7 PubMed DOI

Yang J., Tsukimi T., Yoshikawa M., Suzuki K., Takeda T., Tomita M., et al. (2019). Cutibacterium acnes (Propionibacterium acnes) 16S rRNA genotyping of microbial samples from possessions contributes to owner identification. mSystems 4:e001672-17. 10.1128/mSystems.00594-19 PubMed DOI PMC

Yang L., Yachimski P. S., Brodie E., Nelson K. E., Pei Z. (2015). “Foregut microbiome, development of esophageal adenocarcinoma, project,” in Encyclopedia of Metagenomics, eds. S. K. Highlander, F. Rodriguez-Valera and B A. White (Cham: Springer; ), 186–189. 10.1007/978-1-4899-7475-4_709 DOI

Yarza P., Yilmaz P., Panzer K., Glöckner F. O., Reich M. (2017). A phylogenetic framework for the kingdom Fungi based on 18S rRNA gene sequences. Mar. Genom. 36 33–39. 10.1016/j.margen.2017.05.009 PubMed DOI

Zdravevski E., Lameski P., Trajkovik V., Chorbev I., Goleva R., Pombo N., et al. (2019). “Automation in systematic, scoping and rapid reviews by an NLP toolkit: a case study in enhanced living environments,” in Enhanced Living Environments. Lecture Notes in Computer Science, Vol. 11369 eds Ganchev I., Garcia N., Dobre C., Mavromoustakis C., Goleva R. (Cham: Springer; ), 1–18. 10.1007/978-3-030-10752-9_1 DOI

Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell 163 1079–1094. 10.1016/j.cell.2015.11.001 PubMed DOI

Zeller G., Tap J., Voigt A. Y., Sunagawa S., Kultima J. R., Costea P. I., et al. (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10:766. 10.15252/msb.20145645 PubMed DOI PMC

Zhang Z.-Y. (2012). “Nonnegative matrix factorization: models, algorithms and applications,” in Data Mining: Foundations and Intelligent Paradigms: Volume 2: Statistical, Bayesian, Time Series and other Theoretical Aspects, eds Holmes D. E., Jain L. C. (Berlin: Springer; ), 99–134. 10.1007/978-3-642-23241-1_6 DOI

Zhou F., He K., Li Q., Chapkin R. S., Ni Y. (2020). Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization. arXiv [Preprint], Available online at: http://arxiv.org/abs/2005.08361 (accessed 08 February, 2021). PubMed PMC

Zhou Y.-H., Gallins P. (2019). A review and tutorial of machine learning methods for microbiome host trait prediction. Front. Genet. 10:579. 10.3389/fgene.2019.00579 PubMed DOI PMC

Zhu Q., Li B., He T., Li G., Jiang X. (2020). Robust biomarker discovery for microbiome-wide association studies. Methods 173 44–51. 10.1016/j.ymeth.2019.06.012 PubMed DOI

Zupancic M. L., Cantarel B. L., Liu Z., Drabek E. F., Ryan K. A., Cirimotich S., et al. (2012). Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS One 7:e43052. 10.1371/journal.pone.0043052 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace