Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action

. 2023 ; 14 () : 1257002. [epub] 20230925

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37808321

The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.

Biome Diagnostics GmbH Vienna Austria

BioSense Institute University of Novi Sad Novi Sad Serbia

British Heart Foundation Cardiovascular Epidemiology Unit Department of Public Health and Primary Care University of Cambridge Cambridge United Kingdom

Center for Mathematics and Applications NOVA School of Science and Technology Caparica Portugal

Chemistry and Pharmacy Department University of Sofia Sofia Bulgaria

Computational Biology Group Precision Nutrition and Cancer Research Program IMDEA Food Institute CEI UAM CSIC Madrid Spain

Computational Biology International Centre for Genetic Engineering and Biotechnology Trieste Italy

Computer Science and Engineering Department Faculty of Automatic Control and Computers University Politehnica of Bucharest Bucharest Romania

Department of Applied Statistics and Operations Research and Quality Universitat Politècnica de València València Spain

Department of Biology University of Tirana Tirana Albania

Department of Biomedical Sciences National Research Council Institute for Biomedical Technologies Bari Italy

Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht Netherlands

Department of Clinical Science University of Bergen Bergen Norway

Department of Computer Networks and Systems Silesian University of Technology Gliwice Poland

Department of Computer Science University of Bari Aldo Moro Bari Italy

Department of Computer Science University of Crete Heraklion Greece

Department of Computer Science University Sarajevo School of Science and Technology Sarajevo Bosnia and Herzegovina

Department of Computing University of Turku Turku Finland

Department of Ecology Universität Innsbruck Innsbruck Austria

Department of Electrical and Electronic Engineering University College Cork Cork Ireland

Department of Endocrinology and Nutrition Virgen de la Victoria University Hospital the Biomedical Research Institute of Malaga and Platform in Nanomedicine University of Malaga Malaga Spain

Department of General Surgery and Surgical Medical Specialties School of Dentistry University of Catania Catania Italy

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science Palacký University Olomouc Czechia

Department of Microbiology Universität Innsbruck Innsbruck Austria

Department of Molecular Biotechnology and Functional Genomics Technical University of Applied Sciences Wildau Wildau Germany

Faculty of Technical Sciences University of Novi Sad Novi Sad Serbia

Finnish Institute for Health and Welfare Helsinki Finland

Institute for Molecular Medicine Finland FIMM HiLIFE Helsinki Finland

Institute of Molecular and Cell Biology University of Tartu Tartu Estonia

Institute of Molecular Biology Slovak Academy of Sciences Bratislava Slovakia

Institute of Science and Technology Austria Klosterneuburg Austria

JADBio Gnosis DA S A Science and Technology Park of Crete Heraklion Greece

Molecular Nutrition and Proteomics Research Laboratory Department of Food Science University of Agricultural Sciences and Veterinary Medicine of Cluj Napoca Cluj Napoca Romania

Nicolaus Copernicus University Torun Torun Poland

School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland

Ss Cyril and Methodius University Skopje North Macedonia

Swedish University of Agricultural Sciences Department of Animal Breeding and Genetics Uppsala Sweden

Systems Engineering Department Kharkiv National University of Radio Electronics Kharkiv Ukraine

UNIDEMI Department of Mechanical and Industrial Engineering NOVA School of Science and Technology Caparica Portugal

Université Paris Saclay INRAE MetaGenoPolis Jouy en Josas France

University of Bergen Bergen Norway

University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland

Verlab Research Institute for BIomedical Engineering Medical Devices and Artificial Intelligence Sarajevo Bosnia and Herzegovina

Victor Phillip Dahdaleh Heart and Lung Research Institute University of Cambridge Cambridge United Kingdom

Zobrazit více v PubMed

Ahlawat K., Chug A., Singh A. P. (2021). A novel hybrid sampling algorithm for solving class imbalance problem in big data. Adv. Data Sci. Adapt. Anal. 13:2150005. doi: 10.1142/S2424922X21500054 DOI

Anomaly J. (2017). Ethics, antibiotics, and public policy. Geo. JL Pub. Pol'y 15, 999–1016.

Arcila-Galvis J. E., Loria-Kohen V., Ramírez de Molina A., Carrillo de Santa Pau E., Marcos-Zambrano L. J. (2022). A comprehensive map of microbial biomarkers along the gastrointestinal tract for celiac disease patients. Front Microbiol. 13:956119. doi: 10.3389/fmicb.2022.956119 PubMed DOI PMC

Balech B., Brennan L., Carrillo de Santa Pau E., Cavalieri D., Coort S., D’Elia D., et al. . (2022). The future of food and nutrition in ELIXIR [version 1; peer review: 1 approved with reservations]. F1000Research 11:978. doi: 10.12688/f1000research.51747.1 DOI

Barbet P., Almeida M., Probul N., Baumbach J., Pons N., Plaza Onate F., et al. . (2022). Taxonomic profiles, functional profiles and manually curated metadata of human fecal metagenomes from public projects coming from colorectal cancer studies. Recherche Data Gouv, V5, UNF:6:Hif6zWkvCjqmOEJh2lhq0g== [fileUNF]. doi: 10.57745/7IVO3E DOI

Baxter N. T., Ruffin M. T., Rogers M. A., Schloss P. D. (2016). Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 8:37. doi: 10.1186/s13073-016-0290-3 PubMed DOI PMC

Bidkhori G., Lee S., Edwards L. A., Chatelier E. L., Almeida M., Ezzamouri B., et al. . (2021). The Reactobiome unravels a new paradigm in human gut microbiome metabolism. bioRxiv 2021.02.01.428114 [Preprint]. Available at: https://www.biorxiv.org/content/10.1101/2021.02.01.428114v1 (Accessed June 28, 2023). DOI

Carrieri A. P., Haiminen N., Gardiner L., Murphy B., Mayes A. E., Paterson S., et al. . (2021). Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci. Rep. 11, 1–18. doi: 10.1038/s41598-021-83922-6 PubMed DOI PMC

Cekikj M., Jakimovska Özdemir M., Kalajdzhiski S., Özcan O., Sezerman O. U. (2022). Understanding the role of the microbiome in cancer diagnostics and therapeutics by creating and utilizing ML models. Appl. Sci. 12:4094. doi: 10.3390/app12094094 DOI

Chen H., Lundberg S. M., Lee S. (2022). Explaining a series of models by propagating Shapley values. Nat. Commun. 13, 1–15. doi: 10.1038/s41467-022-31384-3 PubMed DOI PMC

Deutsch L., Debevec T., Millet G. P., Osredkar D., Opara S., Šket R., et al. . (2022). (2022) urine and fecal 1H-NMR metabolomes differ significantly between pre-term and full-term born physically fit healthy adult males. Meta 12:536. doi: 10.3390/metabo12060536 PubMed DOI PMC

Deutsch L., Osredkar D., Plavec J., Stres B. (2021). Spinal muscular atrophy after Nusinersen therapy: improved physiology in pediatric patients with no significant change in urine, serum, and liquor 1H-NMR metabolomes in comparison to an age-matched, healthy cohort. Meta 11:206. doi: 10.3390/metabo11040206 PubMed DOI PMC

Deutsch L., Stres B. (2021). The importance of objective stool classification in fecal 1H-NMR metabolomics: exponential increase in stool crosslinking is mirrored in systemic inflammation and associated to fecal acetate and methionine. Metabolites 11:172. doi: 10.3390/metabo11030172 PubMed DOI PMC

Di Stefano M., Santonocito S., Polizzi A., Mauceri R., Troiano G., Lo Giudice A., et al. . (2023). A reciprocal link between Oral, gut microbiota during periodontitis: the potential role of probiotics in reducing Dysbiosis-induced inflammation. Int. J. Mol. Sci. 24:1084. doi: 10.3390/ijms24021084 PubMed DOI PMC

Feldner-Busztin D., Firbas Nisantzis P., Edmunds S. J., Boza G., Racimo F., Gopalakrishnan S., et al. . (2023). Dealing with dimensionality: the application of machine learning to multi-omics data. Bioinformatics 39:2. doi: 10.1093/bioinformatics/btad021 PubMed DOI PMC

Gao Y., Şimşek Y., Gheysen E., Borman T., Li Y., Lahti L., et al. . (2023). miaSim: an R/Bioconductor package to easily simulate microbial community dynamics. Methods Ecol. Evol. 14, 1967–1980. doi: 10.1111/2041-210X.14129 DOI

Gloor G. B., Macklaim J. M., Pawlowsky-Glahn V., Egozcue J. J. (2017). Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8:2224. doi: 10.3389/fmicb.2017.02224 PubMed DOI PMC

Greenacre M., Blasco A. (2021). Compositional data analysis of microbiome and any-omics datasets: a validation of the additive Logratio transformation. Front. Microbiol. 12:727398. doi: 10.3389/fmicb.2021.727398 PubMed DOI PMC

Hernández Medina R., Kutuzova S., Nielsen K. N., Johansen J., Hansen L. H., Nielsen M., et al. . (2022). Machine learning and deep learning applications in microbiome research. ISME Commun. 2, 1–7. doi: 10.1038/s43705-022-00182-9 PubMed DOI PMC

Kim J., Kim J. (2018). The impact of imbalanced training data on machine learning for author name disambiguation. Scientometrics 117, 511–526. doi: 10.1007/s11192-018-2865-9 DOI

Knoppers B. M., Chadwick R. (2005). Human genetic research: emerging trends in ethics. Nat. Rev. Genet. 6, 75–79. doi: 10.1038/nrg1505 PubMed DOI

Lipton Z. C. (2016). The mythos of model interpretability. ArXiv. doi: 10.48550/arXiv.1606.03490 [Epub ahead of preprint]. DOI

Marcos-Zambrano L. J., Karaduzovic-Hadziabdic K., Loncar Turukalo T., Przymus P., Trajkovik V., Aasmets O., et al. . (2021). Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Front. Microbiol. 12:634511. doi: 10.3389/fmicb.2021.634511 PubMed DOI PMC

Manor O., Dai C. L., Kornilov S. A., Smith B., Price N. D., Lovejoy J. C., et al. . (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 1–12. doi: 10.1038/s41467-020-18871-1 PubMed DOI PMC

Marcos-Zambrano Judith L. (2022). 16S rRNA sequencing gene datasets for CRC data (1.0.0) [data set]. Zenodo. doi: 10.5281/zenodo.7382814 DOI

McMurdie P. J., Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531. doi: 10.1371/journal.pcbi.1003531 PubMed DOI PMC

Mehrabi N., Morstatter F., Saxena N., Lerman K., Galstyan A. (2021). A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35. doi: 10.1145/3457607 DOI

Molnar C. (2022). Interpretable machine learning: a guide for making black box models explainable. 2nd Edn Available at: https://christophm.github.io/interpretable-ml-book/.

Moreno-Indias I., Lahti L., Nedyalkova M., Elbere I., Roshchupkin G., Adilovic M., et al. . (2021). Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12:635781. doi: 10.3389/fmicb.2021.635781 PubMed DOI PMC

Papoutsoglou G., Tarazona S., Lopes M. B., Klammsteiner T., Ibrahimi E., Eckenberger J., et al. . (2023). Machine learning approaches in microbiome research: challenges and best practices. Front. Microbiol. Sec. Systems Microbiol. 14. doi: 10.3389/fmicb.2023.1261889 PubMed DOI PMC

Pasolli E., Truong D. T., Malik F., Waldron L., Segata N. (2016). Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12:e1004977. doi: 10.1371/journal.pcbi.1004977 PubMed DOI PMC

Rosario D., Bidkhori G., Lee S., Bedarf J., Hildebrand F., Le Chatelier E., et al. . (2021). Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson's disease. Cell Rep. 34:108807. doi: 10.1016/j.celrep.2021.108807 PubMed DOI

Ruuskanen M. O., Erawijantari P. P., Havulinna A. S., Liu Y., Méric G., Tuomilehto J., et al. . (2022). Gut microbiome composition is predictive of incident type 2 diabetes in a population cohort of 5,572 Finnish adults. Diabetes Care 45, 811–818. doi: 10.2337/dc21-2358 PubMed DOI PMC

Rynazal R., Fujisawa K., Shiroma H., Salim F., Mizutani S., Shiba S., et al. . (2023). Leveraging explainable AI for gut microbiome-based colorectal cancer classification. Genome Biol. 24:21. doi: 10.1186/s13059-023-02858-4 PubMed DOI PMC

Salosensaari A., Laitinen V., Havulinna A. S., Meric G., Cheng S., Perola M., et al. . (2021). Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 12, 1–8. doi: 10.1038/s41467-021-22962-y PubMed DOI PMC

Schloss P. D. (2023) Rarefaction is currently the best approach to control for uneven sequencing effort in amplicon sequence analyses. bioRxiv [Epub ahead of preprint]. doi: 10.1101/2023.06.23.546313 PubMed DOI PMC

Shabani M., Borry P. (2018). Rules for processing genetic data for research purposes in view of the new EU general data protection regulation. Eur. J. Hum. Genet. 26, 149–156. doi: 10.1038/s41431-017-0045-7 PubMed DOI PMC

Tonkovic P., Kalajdziski S., Zdravevski E., Lameski P., Corizzo R., Pires I. M., et al. . (2020). Literature on applied machine learning in metagenomic classification: a scoping review. Biology 9:453. doi: 10.3390/biology9120453 PubMed DOI PMC

Tsamardinos I., Charonyktakis P., Papoutsoglou G., Borboudakis G., Lakiotaki K., Zenklusen J. C., et al. . (2022). Just add data: automated predictive modeling for knowledge discovery and feature selection. NPJ Precision Oncol. 6:38. doi: 10.1038/s41698-022-00274-8 PubMed DOI PMC

Vilne B., Ķibilds J., Siksna I., Lazda I., Valciņa O., Krūmiņa A. (2022). Could artificial intelligence/machine learning and inclusion of diet-gut microbiome interactions improve disease risk prediction? Case study: coronary artery disease. Front. Microbiol. 13:627892. doi: 10.3389/fmicb.2022.627892 PubMed DOI PMC

Voigt A. Y., Costea P. I., Kultima J. R., Li S. S., Zeller G., Sunagawa S., et al. . (2015). Temporal and technical variability of human gut metagenomes. Genome Biol. 16:73. doi: 10.1186/s13059-015-0639-8 PubMed DOI PMC

Walsh I., Fishman D., Titma T., Pollastri G., Harrow J., Psomopoulos F. E., et al. . (2021). DOME: recommendations for supervised machine learning validation in biology. Nat. Methods 18, 1122–1127. doi: 10.1038/s41592-021-01205-4 PubMed DOI

Weiss S., Xu Z. Z., Peddada S., Amir A., Bittinger K., Gonzalez A., et al. . (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. doi: 10.1186/s40168-017-0237-y PubMed DOI PMC

Zackular J. P., Rogers M. A., Ruffin M. T., 4th, Schloss P. D. (2014). The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. (Phila.) 7, 1112–1121. doi: 10.1158/1940-6207.CAPR-14-0129 PubMed DOI PMC

Zeller G., Tap J., Voigt A. Y., Sunagawa S., Kultima J. R., Costea P. I., et al. . (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10:766. doi: 10.15252/msb.20145645 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Overview of data preprocessing for machine learning applications in human microbiome research

. 2023 ; 14 () : 1250909. [epub] 20231005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace