Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36224252
PubMed Central
PMC9556554
DOI
10.1038/s41598-022-21147-x
PII: 10.1038/s41598-022-21147-x
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- CRISPR-Cas systémy MeSH
- hem MeSH
- kyselina aminolevulová metabolismus MeSH
- lidé MeSH
- oxidoreduktasy * genetika metabolismus MeSH
- porphyria variegata * genetika MeSH
- protoporfyrinogenoxidasa genetika metabolismus MeSH
- protoporfyriny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- kyselina aminolevulová MeSH
- oxidoreduktasy * MeSH
- protoporfyrinogenoxidasa MeSH
- protoporfyriny MeSH
- protoporphyrinogen MeSH Prohlížeč
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
1st Faculty of Medicine Charles University Katerinska 32 Prague 12108 Czech Republic
Faculty of Science Charles University Vinicna 5 Prague 12108 Czech Republic
Zobrazit více v PubMed
Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 2008;474:238–251. doi: 10.1016/j.abb.2008.02.015. PubMed DOI
Phillips JD. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 2019;128:164–177. doi: 10.1016/j.ymgme.2019.04.008. PubMed DOI PMC
Hamza I, Dailey HA. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta. 1823;1617–1632:2012. doi: 10.1016/j.bbamcr.2012.04.009. PubMed DOI PMC
Swenson SA, et al. From synthesis to utilization: The ins and outs of mitochondrial heme. Cells. 2020 doi: 10.3390/cells9030579. PubMed DOI PMC
Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 2014 doi: 10.3389/fphar.2014.00061. PubMed DOI PMC
Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochim. Biophys. Acta. 2006;1763:723–736. doi: 10.1016/j.bbamcr.2006.05.005. PubMed DOI
Consoli V, Sorrenti V, Grosso S, Vanella L. Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules. 2021 doi: 10.3390/biom11040589. PubMed DOI PMC
Stocker R, Perrella MA. Heme oxygenase-1: A novel drug target for atherosclerotic diseases? Circulation. 2006;114:2178–2189. doi: 10.1161/CIRCULATIONAHA.105.598698. PubMed DOI
Hanna DA, Martinez-Guzman O, Reddi AR. Heme gazing: Illuminating eukaryotic heme trafficking, dynamics, and signaling with fluorescent heme sensors. Biochemistry. 2017;56:1815–1823. doi: 10.1021/acs.biochem.7b00007. PubMed DOI PMC
Reddi AR, Hamza I. Heme mobilization in animals: A metallolipid's journey. Acc. Chem. Res. 2016;49:1104–1110. doi: 10.1021/acs.accounts.5b00553. PubMed DOI PMC
Duffy SP, et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol. Cell Biol. 2010;30:5318–5324. doi: 10.1128/MCB.00690-10. PubMed DOI PMC
Le Blanc S, Garrick MD, Arredondo M. Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am. J. Physiol. Cell Physiol. 2012;302:C1780–1785. doi: 10.1152/ajpcell.00080.2012. PubMed DOI
Rajagopal A, et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 2008;453:1127–1131. doi: 10.1038/nature06934. PubMed DOI PMC
Ascenzi P, et al. Hemoglobin and heme scavenging. IUBMB Life. 2005;57:749–759. doi: 10.1080/15216540500380871. PubMed DOI
Kristiansen M, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409:198–201. doi: 10.1038/35051594. PubMed DOI
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic. Biol. Med. 2019;133:88–100. doi: 10.1016/j.freeradbiomed.2018.08.005. PubMed DOI PMC
Dailey HA, Meissner PN. Erythroid heme biosynthesis and its disorders. Cold Spring Harb. Perspect. Med. 2013;3:a011676. doi: 10.1101/cshperspect.a011676. PubMed DOI PMC
Arora S, Young S, Kodali S, Singal AK. Hepatic porphyria: A narrative review. Indian J. Gastroenterol. 2016;35:405–418. doi: 10.1007/s12664-016-0698-0. PubMed DOI
Stein PE, Badminton MN, Rees DC. Update review of the acute porphyrias. Br. J. Haematol. 2017;176:527–538. doi: 10.1111/bjh.14459. PubMed DOI
Yasuda M, Chen B, Desnick RJ. Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol. Genet. Metab. 2019;128:320–331. doi: 10.1016/j.ymgme.2018.11.012. PubMed DOI PMC
Brenner DA, Bloomer JR. The enzymatic defect in variegate porphyria. Studies with human cultured skin fibroblasts. N. Engl. J. Med. 1980;302:765–769. doi: 10.1056/NEJM198004033021401. PubMed DOI
Deybach JC, de Verneuil H, Nordmann Y. The inherited enzymatic defect in porphyria variegata. Hum. Genet. 1981;58:425–428. doi: 10.1007/BF00282829. PubMed DOI
Dailey HA, Dailey TA. Characteristics of human protoporphyrinogen oxidase in controls and variegate porphyrias. Cell. Mol. Biol. (Noisy-le-grand) 1997;43:67–73. PubMed
Frank J, Lam H, Zaider E, Poh-Fitzpatrick M, Christiano AM. Molecular basis of variegate porphyria: A missense mutation in the protoporphyrinogen oxidase gene. J. Med. Genet. 1998;35:244–247. doi: 10.1136/jmg.35.3.244. PubMed DOI PMC
Frank J, McGrath JA, Poh-Fitzpatrick MB, Hawk JL, Christiano AM. Mutations in the translation initiation codon of the protoporphyrinogen oxidase gene underlie variegate porphyria. Clin. Exp. Dermatol. 1999;24:296–301. doi: 10.1046/j.1365-2230.1999.00484.x. PubMed DOI
Wang B, et al. Quantitative structural insight into human variegate porphyria disease. J. Biol. Chem. 2013;288:11731–11740. doi: 10.1074/jbc.M113.459768. PubMed DOI PMC
Deybach JC, et al. Mutations in the protoporphyrinogen oxidase gene in patients with variegate porphyria. Hum. Mol. Genet. 1996;5:407–410. doi: 10.1093/hmg/5.3.407. PubMed DOI
Meissner PN, et al. A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nat. Genet. 1996;13:95–97. doi: 10.1038/ng0596-95. PubMed DOI
Kirsch RE, Meissner PN, Hift RJ. Variegate porphyria. Semin. Liver Dis. 1998;18:33–41. doi: 10.1055/s-2007-1007138. PubMed DOI
Medlock AE, Meissner PN, Davidson BP, Corrigall AV, Dailey HA. A mouse model for South African (R59W) variegate porphyria: Construction and initial characterization. Cell Mol. Biol. (Noisy-le-grand) 2002;48:71–78. PubMed
Puy H, Robreau AM, Rosipal R, Nordmann Y, Deybach JC. Protoporphyrinogen oxidase: Complete genomic sequence and polymorphisms in the human gene. Biochem. Biophys. Res. Co. 1996;226:226–230. doi: 10.1006/bbrc.1996.1337. PubMed DOI
Roberts AG, et al. Partial characterization and assignment of the gene for protoporphyrinogen oxidase and variegate porphyria to human-chromosome 1q23. Hum. Mol. Genet. 1995;4:2387–2390. doi: 10.1093/hmg/4.12.2387. PubMed DOI
Taketani S, et al. The human protoporphyrinogen oxidase gene (PPOX): Organization and location to chromosome 1. Genomics. 1995;29:698–703. doi: 10.1006/geno.1995.9949. PubMed DOI
Beale, S. I. & Weinstein, J. D. Biosynthesis of Heme and Chlorophylls. (ed. Dailey, H. A.). 287–391 (McGraw-Hill, 1990).
Dailey TA, Dailey HA. Human protoporphyrinogen oxidase: Expression, purification, and characterization of the cloned enzyme. Protein Sci. 1996;5:98–105. doi: 10.1002/pro.5560050112. PubMed DOI PMC
Akhtar M. The modification of acetate and propionate side-chains during the biosynthesis of heme and chlorophylls—Mechanistic and stereochemical studies. Ciba F Symp. 1994;180:131–151. PubMed
Nishimura K, Taketani S, Inokuchi H. Cloning of a human cDNA for protoporphyrinogen oxidase by complementation in vivo of a hemG mutant of Escherichia coli. J. Biol. Chem. 1995;270:8076–8080. doi: 10.1074/jbc.270.14.8076. PubMed DOI
Medlock AE, et al. Identification of the mitochondrial heme metabolism complex. PLoS ONE. 2015;10:e0135896. doi: 10.1371/journal.pone.0135896. PubMed DOI PMC
Rhee HW, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 2013;339:1328–1331. doi: 10.1126/science.1230593. PubMed DOI PMC
Dooley KA, et al. Montalcino, A zebrafish model for variegate porphyria. Exp. Hematol. 2008;36:1132–1142. doi: 10.1016/j.exphem.2008.04.008. PubMed DOI PMC
Dayan FE, Duke SO. Protoporphyrinogen oxidase-inhibiting herbicides. Hayes' Handb. Pestic. Toxicol. 2010;3:1733–1751. doi: 10.1016/B978-0-12-374367-1.00081-1. DOI
Theodoridis G, Liebl R, Zagar C. Protoporphyrinogen IX oxidase inhibitors. Mod. Crop Protect. Compds. 2012;2:163–195. doi: 10.1002/9783527644179.ch3. DOI
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–W245. doi: 10.1093/nar/gky354. PubMed DOI PMC
Al-Romaih K, et al. Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet. Cytogenet. 2003;144:91–99. doi: 10.1016/s0165-4608(02)00929-9. PubMed DOI
Raftopoulou C, et al. Karyotypic flexibility of the complex cancer genome and the role of polyploidization in maintenance of structural integrity of cancer chromosomes. Cancers (Basel) 2020 doi: 10.3390/cancers12030591. PubMed DOI PMC
Marcero JR, PielIii RB, Burch JS, Dailey HA. Rapid and sensitive quantitation of heme in hemoglobinized cells. Biotechniques. 2016;61:83–91. doi: 10.2144/000114444. PubMed DOI
Sohoni S, et al. Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 2019;79:2511–2525. doi: 10.1158/0008-5472.CAN-18-2156. PubMed DOI
Pereira TF, et al. Fluorescence-based method is more accurate than counting-based methods for plotting growth curves of adherent cells. BMC Res. Notes. 2020;13:57. doi: 10.1186/s13104-020-4914-8. PubMed DOI PMC
Cable EE, Miller TG, Isom HC. Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines: Delta-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. Arch. Biochem. Biophys. 2000;384:280–295. doi: 10.1006/abbi.2000.2117. PubMed DOI
Lathrop JT, Timko MP. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science. 1993;259:522–525. doi: 10.1126/science.8424176. PubMed DOI
Munakata H, et al. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase. J. Biochem. 2004;136:233–238. doi: 10.1093/jb/mvh112. PubMed DOI
Hamilton JW, et al. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch. Biochem. Biophys. 1991;289:387–392. doi: 10.1016/0003-9861(91)90428-l. PubMed DOI
Sassa S, Granick S. Induction of -aminolevulinic acid synthetase in chick embryo liver cells in cluture. Proc. Natl. Acad. Sci. U S A. 1970;67:517–522. doi: 10.1073/pnas.67.2.517. PubMed DOI PMC
Tian Q, et al. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J. Biol. Chem. 2011;286:26424–26430. doi: 10.1074/jbc.M110.215772. PubMed DOI PMC
Yamamoto M, Hayashi N, Kikuchi G. Evidence for the transcriptional inhibition by heme of the synthesis of delta-aminolevulinate synthase in rat liver. Biochem. Biophys. Res. Commun. 1982;105:985–990. doi: 10.1016/0006-291x(82)91067-1. PubMed DOI
Yamamoto M, Hayashi N, Kikuchi G. Translational inhibition by heme of the synthesis of hepatic delta-aminolevulinate synthase in a cell-free system. Biochem. Biophys. Res. Commun. 1983;115:225–231. doi: 10.1016/0006-291x(83)90993-2. PubMed DOI
Dailey TA, Woodruff JH, Dailey HA. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem. J. 2005;386:381–386. doi: 10.1042/BJ20040570. PubMed DOI PMC
Jerico D, et al. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Mol. Ther. Nucleic Acids. 2021;25:207–219. doi: 10.1016/j.omtn.2021.05.010. PubMed DOI PMC
Hao GF, Zuo Y, Yang SG, Yang GF. Protoporphyrinogen oxidase inhibitor: An ideal target for herbicide discovery. Chimia (Aarau) 2011;65:961–969. doi: 10.2533/chimia.2011.961. PubMed DOI
Jacobs JM, Jacobs NJ, Sherman TD, Duke SO. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 1991;97:197–203. doi: 10.1104/pp.97.1.197. PubMed DOI PMC
Arnould S, Camadro JM. The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc. Natl. Acad. Sci. USA. 1998;95:10553–10558. doi: 10.1073/pnas.95.18.10553. PubMed DOI PMC
Witkowski DA, Halling BP. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 1989;90:1239–1242. doi: 10.1104/pp.90.4.1239. PubMed DOI PMC
Quest JA, et al. Evaluation of the carcinogenic potential of pesticides. 1. Acifluorfen. Regul. Toxicol. Pharmacol. 1989;10:149–159. doi: 10.1016/0273-2300(89)90022-6. PubMed DOI
Matringe M, Camadro JM, Labbe P, Scalla R. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 1989;260:231–235. doi: 10.1042/bj2600231. PubMed DOI PMC
Jakubek M, et al. PPO-inhibiting herbicides and structurally relevant Schiff bases: Evaluation of inhibitory activities against human protoporphyrinogen oxidase. Processes. 2021 doi: 10.3390/pr9020383. DOI
Frank J, et al. Homozygous variegate porphyria: Identification of mutations on both alleles of the protoporphyrinogen oxidase gene in a severely affected proband. J. Invest. Dermatol. 1998;110:452–455. doi: 10.1046/j.1523-1747.1998.00148.x. PubMed DOI
Dixon N, et al. Pilot study of mitochondrial bioenergetics in subjects with acute porphyrias. Mol. Genet. Metab. 2019;128:228–235. doi: 10.1016/j.ymgme.2019.05.010. PubMed DOI PMC
Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Shepherd M, Dailey HA. A continuous fluorimetric assay for protoporphyrinogen oxidase by monitoring porphyrin accumulation. Anal. Biochem. 2005;344:115–121. doi: 10.1016/j.ab.2005.06.012. PubMed DOI PMC
Fyrestam J, Ostman C. Determination of heme in microorganisms using HPLC-MS/MS and cobalt(III) protoporphyrin IX inhibition of heme acquisition in Escherichia coli. Anal. Bioanal. Chem. 2017;409:6999–7010. doi: 10.1007/s00216-017-0610-5. PubMed DOI PMC
Beika M, et al. Accumulation of uroporphyrin I in necrotic tissues of squamous cell carcinoma after administration of 5-aminolevulinic acid. Int. J. Mol. Sci. 2021 doi: 10.3390/ijms221810121. PubMed DOI PMC
Hartmannova H, et al. Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum. Mol. Genet. 2016;25:4062–4079. doi: 10.1093/hmg/ddw245. PubMed DOI
Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Wittig I, Braun HP, Schagger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. doi: 10.1038/nprot.2006.62. PubMed DOI
Cunatova K, et al. Loss of COX4I1 leads to combined respiratory chain deficiency and impaired mitochondrial protein synthesis. Cells. 2021 doi: 10.3390/cells10020369. PubMed DOI PMC
PajueloReguera D, et al. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells. 2020 doi: 10.3390/cells9020443. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC