Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(Ethylene Glycol) Nanofluids
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06925S
Grantová Agentura České Republiky
434434223 - SFB 1461
Deutsche Forschungsgemeinschaft
57 654 440
German Academic Exchange Service
8J23DE016
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053-EATRIS-CZ-ERIC
Ministerstvo Školství, Mládeže a Tělovýchovy
5/GnG/2022
Politechnika Lubelska
PubMed
40569216
DOI
10.1002/advs.202505103
Knihovny.cz E-zdroje
- Klíčová slova
- bio‐inspired electronics, conductivity mechanism, initialization, molecular mobility of the polymer, resistive switching, silver/poly(ethylene glycol) nanofluid,
- Publikační typ
- časopisecké články MeSH
Developing novel memristive systems aims to implement key principles of biological neuron assemblies - plasticity, adaptivity, and self-organization - into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored. Here, the resistive switching in silver/poly(ethylene glycol) (Ag/PEG) nanofluids, prepared by depositing gas-aggregated Ag NPs into PEGs of varying molecular mass, is investigated. These systems form long-range conductive NP bridges with reconfigurable resistance states in response to an electric field. The zeta-potential of Ag NPs and molecular mobility of PEG determine the prevalence of low resistance (ohmic) state, high resistance states (poor conductance) or intermediate transition states governed by space-charge-limited conduction or electron tunneling. The occurrence of these states is given by the interparticle gaps, which are determined by the conformation of PEG molecules adsorbed on the NPs. It is presented, for the first time, an equivalent circuit model for the Ag/PEG system. These findings pave the way to adopt polymer melts as matrices for neuromorphic engineering and bio-inspired electronics.
Bundesanstalt für Materialforschung und prüfung Unter den Eichen 87 12205 Berlin Germany
Institut für Chemie Technische Universität Berlin Straße des 17 Juni 135 10623 Berlin Germany
Institute of Macromolecular Chemistry CAS Heyrovského nám 2 Prague 16206 Czech Republic
Leibniz Institute for Plasma Science and Technology Felix Hausdorff Str 2 17489 Greifswald Germany
Zobrazit více v PubMed
K. Bourzac, Nature 2024, https://doi.org/10.1038/d41586‐024‐03408‐z.
R. Istrate, V. Tulus, R. N. Grass, L. Vanbever, W. J. Stark, G. Guillén‐Gosálbez, Nat. Commun. 2024, 15, 3724.
C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, B. Kay, Nat Comput Sci 2022, 2, 10,.
H. Seok, D. Lee, S. Son, H. Choi, G. Kim, T. Kim, Adv. Electron. Mater. 2024, 10, 2300839.
D. Liu, H. Yu, Y. Chai, Adv. Intell. Syst. 2021, 3, 2000150.
Y. Sun, H. Wang, D. Xie, Nanomicro Lett. 2024, 16, 211.
Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, J. J. Yang, Nat. Rev. Mater. 2020, 5, 173.
M.‐I. Terasa, T. Birkoben, M. Noll, B. Adejube, R. Madurawala, N. Carstens, T. Strunskus, S. Kaps, F. Faupel, A. Vahl, H. Kohlstedt, R. Adelung, Mater. Today 2023, 69, 41.
Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, A. Salleo, Nat. Electron. 2018, 1, 386.
A. Vahl, G. Milano, Z. Kuncic, S. A. Brown, P. Milani, J. Phys. D Appl. Phys. 2024, 57, 503001.
Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
D. Kumar, H. Li, D. D. Kumbhar, M. K. Rajbhar, U. K. Das, A. M. Syed, G. Melinte, N. El‐Atab, Nanomicro Lett. 2024, 16, 238.
S. J. Studholme, Z. E. Heywood, J. B. Mallinson, J. K. Steel, P. J. Bones, M. D. Arnold, S. A. Brown, Nano Lett. 2023, 23, 10594.
G. Nadalini, F. Borghi, T. Košutová, A. Falqui, N. Ludwig, P. Milani, Sci. Rep. 2023, 13, 19713.
S. Radice, F. Profumo, F. Borghi, A. Falqui, P. Milani, Adv. Electron. Mater. 2024, 10, 2400434.
O. Gronenberg, B. Adejube, T. Hemke, J. Drewes, O. H. Asnaz, F. Ziegler, N. Carstens, T. Strunskus, U. Schürmann, J. Benedikt, T. Mussenbrock, F. Faupel, A. Vahl, L. Kienle, Adv. Funct. Mater. 2024, 34, 2312989.
N. Carstens, B. Adejube, T. Strunskus, F. Faupel, S. Brown, A. Vahl, Nanoscale Adv. 2022, 4, 3149.
P. Gkoupidenis, D. A. Koutsouras, G. G. Malliaras, Nat. Commun. 2017, 8, 15448.
A. Sharma, M. T.‐K. Ng, J. M. Parrilla Gutierrez, Y. Jiang, L. Cronin, Nat. Commun. 2024, 15, 1984.
D. Nikitin, H. Biederman, A. Choukourov, Recent Pat. Nanotechnol. 2024, https://doi.org/10.2174/0118722105305259240919074119.
P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang, B. Dong, Y. Fu, K. Yang, Y. Li, Y. He, R. H. Scheicher, X. S. Miao, Nano Lett. 2019, 19, 4279.
J.‐B. Chen, T.‐T. Guo, C.‐Y. Yang, J.‐W. Xu, L.‐Y. Gao, S.‐J. Jia, P. Zhang, J.‐T. Chen, Y. Zhao, J. Wang, X.‐Q. Zhang, Y. Li, J. Phys. Chem. C 2023, 127, 3307.
Y. Noh, A. Smolyanitsky, J. Phys. Chem. Lett. 2024, 15, 665.
D. Shi, W. Wang, Y. Liang, L. Duan, G. Du, Y. Xie, Nano Lett. 2023, 23, 11662.
D. Nikitin, K. Biliak, P. Pleskunov, S. Ali‐Ogly, V. Červenková, N. Carstens, B. Adejube, T. Strunskus, Z. Černochová, P. Štepánek, L. Bajtošová, M. Cieslar, M. Protsak, M. Tosca, J. Lemke, F. Faupel, H. Biederman, A. Vahl, A. Choukourov, Adv. Funct. Mater. 2024, 34, 2310473.
D. Nikitin, K. Biliak, J. Lemke, M. Protsak, P. Pleskunov, M. Tosca, S. Ali‐Ogly, V. Červenková, B. Adejube, L. Bajtošová, Z. Černochová, J. Prokeš, I. Křivka, H. Biederman, F. Faupel, A. Vahl, A. Choukourov, Proceedings 15th International Conference on Nanomaterials ‐ Research & Application 2024, 28 , https://doi.org/10.37904/nanocon.2023.4748.
K. Biliak, D. Nikitin, S. Ali‐Ogly, M. Protsak, P. Pleskunov, M. Tosca, A. Sergievskaya, D. Cornil, J. Cornil, S. Konstantinidis, T. Košutová, Z. Černochová, P. Štëpánek, J. Hanuš, J. Kousal, L. Hanyková, I. Krakovský, A. Choukourov, Nanoscale Adv 2022, 5, 955 .
E. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids. The Interaction of Particles Having an Electric Double Layer, Elsevier, New York‐Amsterdam 1948.
A. M. El Badawy, R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Environ. Sci. Technol. 2011, 45, 283.
N. G. Bastús, J. Comenge, V. Puntes, Langmuir 2011, 27, 11098.
A. Schönhals, F. Kremer, Broadband Dielectric Spectroscopy. Chapter 3, Springer, Berlin Heidelberg, Berlin, Heidelberg 2003.
C. Minnai, A. Bellacicca, S. A. Brown, P. Milani, Sci. Rep. 2017, 7, 7955.
J. B. Mallinson, S. Shirai, S. K. Acharya, S. K. Bose, E. Galli, S. A. Brown, Sci. Adv. 2019, 5, aaw8438.
C. Bhanot, S. Trivedi, A. Gupta, S. Pandey, S. Pandey, J. Chem. Thermodyn. 2012, 45, 137.
R. Sengwa, K. Kaur, R. Chaudhary, Polym. Int. 2000, 49, 599.
R. J. Sengwa, S. Choudhary, P. Dhatarwal, J. Mol. Liq. 2016, 220, 1042.
N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals, Clarendon Press, Walton Street, Central Oxford, England 1940.
D. Conklin, S. Nanayakkara, T.‐H. Park, M. F. Lagadec, J. T. Stecher, M. J. Therien, D. A. Bonnell, Nano Lett. 2012, 12, 2414.
S. K. Bose, S. Shirai, J. B. Mallinson, S. A. Brown, Faraday Discuss. 2019, 213, 471.
S. Napolitano, Soft Matter 2020, 16, 5348.
D. H. Vogel, Physikalische Zeitschrift 1921, 22, 645.
G. S. Fulcher, J. Am. Ceram. Soc. 1925, 8, 339.
G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 1926, 156, 245.
D. I. Nikitin, S. A. Madkour, P. L. Pleskunov, R. Tafiichuk, A. Shelemin, J. Hanuš, I. Gordeev, E. V. Sysolyatina, A. Y. Lavrikova, S. A. Ermolaeva, V. A. Titov, A. Schönhals, A. Choukourov, Soft Matter 2019, 15, 2884.
P. G. de Gennes, Macromolecules 1980, 13, 1069.
J. L. Perry, K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones, J. C. Luft, M. Napier, J. E. Bear, J. M. DeSimone, Nano Lett. 2012, 12, 5304.
I. Valov, R. Waser, J. R. Jameson, M. N. Kozicki, Nanotechnology 2011, 22, 254003.
A. Choukourov, D. I. Nikitin, P. L. Pleskunov, R. Tafiichuk, K. L. Biliak, M. Protsak, K. Kishenina, J. Hanuš, M. Dopita, M. Cieslar, T. Popelář, L. Ondič, M. Varga, J. Mol. Liq. 2021, 336, 116319.
O. Kylián, D. I. Nikitin, J. Hanuš, S. Ali‐Ogly, P. L. Pleskunov, H. Biederman, J. Vacuum Science and Technology A: Vacuum, Surfaces and Films 2023, 41, 116319.
K. L. Biliak, M. Protsak, P. L. Pleskunov, D. I. Nikitin, J. Hanuš, S. Ali‐Ogly, J. Šomvársky, M. Tosca, M. Cieslar, T. Košutová, M. Dopita, F. L. Ferreira, A. Choukourov, ACS Appl. Nano Mater. 2023, 6, 21642.
M. Protsak, K. L. Biliak, D. I. Nikitin, P. L. Pleskunov, M. Tosca, S. Ali‐Ogly, J. Hanuš, L. Hanyková, V. Červenková, A. P. Sergievskaya, S. Konstantinidis, D. Cornil, J. Cornil, M. Cieslar, T. Košutová, T. Popelář, L. Ondič, A. Choukourov, Nanoscale 2023, 16, 2452.
M. Protsak, V. Červenková, D. Nikitin, S. Ali‐Ogly, Z. Krtous, K. Biliak, P. Pleskunov, M. Tosca, R. Katuta, H. Biederman, B. Baloukas, L. Martinu, L. Bajtosova, M. Cieslar, M. Dopita, A. Choukourov, ACS Appl. Nano Mater. 2025, 8, 3092 .
M. JAFARI, A. DANTI, I. AHMED, Int. J. Pharm. 1988, 48, 207.
M. C. M. Sequeira, H. M. N. T. Avelino, F. J. P. Caetano, J. M. N. A. Fareleira, J. Chem. Eng. Data 2023, 68, 64.
V. Mathot, M. Pyda, T. Pijpers, G. Vanden Poel, E. van de Kerkhof, S. van Herwaarden, F. van Herwaarden, A. Leenaers, Thermochim. Acta 2011, 522, 36.