Engineering the structural and electrical interplay of nanostructured Au resistive switching networks by controlling the forming process

. 2023 Nov 12 ; 13 (1) : 19713. [epub] 20231112

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37953278
Odkazy

PubMed 37953278
PubMed Central PMC10641076
DOI 10.1038/s41598-023-46990-4
PII: 10.1038/s41598-023-46990-4
Knihovny.cz E-zdroje

Networks of random-assembled gold clusters produced in the gas phase show resistive switching (RS) activity at room temperature and they are suitable for the fabrication of devices for neuromorphic data processing and classification. Fully connected cluster-assembled nanostructured Au films are characterized by a granular structure rich of interfaces, grain boundaries and crystalline defects. Here we report a systematic characterization of the electroforming process of the cluster-assembled films demonstrating how this process affects the interplay between the nano- and mesoscale film structure and the neuromorphic characteristics of the resistive switching activity. The understanding and the control of the influence of the resistive switching forming process on the organization of specific structures at different scales of the cluster-assembled films, provide the possibility to engineer random-assembled neuromorphic architectures for data processing task.

Zobrazit více v PubMed

Christensen DV, et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2022;2:022501. doi: 10.1088/2634-4386/ac4a83. DOI

Scharnhorst, K. S. et al. Atomic switch networks as complex adaptive systems. Jpn. J. Appl. Phys.57, 03ED02 (2018).

Varghese S, Elemans JAAW, Rowan AE, Nolte RJM. Molecular computing: Paths to chemical turing machines. Chem. Sci. 2015;6:6050–6058. doi: 10.1039/C5SC02317C. PubMed DOI PMC

Jaeger H. Towards a generalized theory comprising digital, neuromorphic and unconventional computing. Neuromorphic Comput. Eng. 2021;1:012002. doi: 10.1088/2634-4386/abf151. DOI

Ielmini D, Wong H-SP. In-memory computing with resistive switching devices. Nat. Electron. 2018;1:333–343. doi: 10.1038/s41928-018-0092-2. DOI

Jacob AP, et al. Scaling challenges for advanced CMOS devices. Int. J. High Speed Electron. Syst. 2017;26:1740001. doi: 10.1142/S0129156417400018. DOI

Heath JR, Kuekes PJ, Snider GS, Williams RS. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science. 1998;1979(280):1716–1721. doi: 10.1126/science.280.5370.1716. DOI

Chua L. Memristor—The missing circuit element. IEEE Trans. Circuit Theory. 1971;18:507–519. doi: 10.1109/TCT.1971.1083337. DOI

Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019;18:309–323. doi: 10.1038/s41563-019-0291-x. PubMed DOI

Eric R. Kandel, J. H. S. e T. M. J. Principles of neural science. (Health Professions Division, 2000).

Mirigliano M, et al. A binary classifier based on a reconfigurable dense network of metallic nanojunctions. Neuromorphic Comput. Eng. 2021;1:024007. doi: 10.1088/2634-4386/ac29c9. DOI

Milano G, et al. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks. Adv. Intell. Syst. 2020;2:2000096. doi: 10.1002/aisy.202000096. DOI

Manning HG, et al. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. 2018;9:3219. doi: 10.1038/s41467-018-05517-6. PubMed DOI PMC

Sandouk EJ, Gimzewski JK, Stieg AZ. Multistate resistive switching in silver nanoparticle films. Sci. Technol. Adv. Mater. 2015;16:045004. doi: 10.1088/1468-6996/16/4/045004. PubMed DOI PMC

Levina A, Herrmann JM, Geisel T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 2007;3:857–860. doi: 10.1038/nphys758. DOI

Friedman N, et al. Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 2012;108:208102. doi: 10.1103/PhysRevLett.108.208102. PubMed DOI

Feller MB. Spontaneous correlated activity in developing neural circuits. Neuron. 1999;22:653–656. doi: 10.1016/S0896-6273(00)80724-2. PubMed DOI

Lonardoni D, et al. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Comput. Biol. 2017;13:e1005672. doi: 10.1371/journal.pcbi.1005672. PubMed DOI PMC

Du C, et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017;8:2204. doi: 10.1038/s41467-017-02337-y. PubMed DOI PMC

Boybat I, et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 2018;9:2514. doi: 10.1038/s41467-018-04933-y. PubMed DOI PMC

Rajendran B, et al. Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Trans. Electron. Devices. 2013;60:246–253. doi: 10.1109/TED.2012.2227969. DOI

Milano G, et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022;21:195–202. doi: 10.1038/s41563-021-01099-9. PubMed DOI

Sillin HO, et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology. 2013;24:384004. doi: 10.1088/0957-4484/24/38/384004. PubMed DOI

Mallinson, J. B. et al. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv.5, (2019). PubMed PMC

Diaz-Alvarez A, et al. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019;9:14920. doi: 10.1038/s41598-019-51330-6. PubMed DOI PMC

Mirigliano M, et al. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Adv. 2019;1:3119–3130. doi: 10.1039/C9NA00256A. PubMed DOI PMC

Mirigliano, M. & Milani, P. Electrical conduction in nanogranular cluster-assembled metallic films. Adv Phys X6, (2021).

Mirigliano M, et al. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. Nanotechnology. 2020;31:234001. doi: 10.1088/1361-6528/ab76ec. PubMed DOI

Mirigliano M, et al. Anomalous electrical conduction and negative temperature coefficient of resistance in nanostructured gold resistive switching films. Sci. Rep. 2020;10:19613. doi: 10.1038/s41598-020-76632-y. PubMed DOI PMC

Wegner K, Piseri P, Tafreshi HV, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D Appl. Phys. 2006;39:R439–R459. doi: 10.1088/0022-3727/39/22/R02. DOI

Barborini E, Piseri P, Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. D Appl. Phys. 1999;32:L105–L109. doi: 10.1088/0022-3727/32/21/102. DOI

Piseri P, Podestà A, Barborini E, Milani P. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev. Sci. Instrum. 2001;72:2261–2267. doi: 10.1063/1.1361082. DOI

Mazzoni A, et al. On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE. 2007;2:e439. doi: 10.1371/journal.pone.0000439. PubMed DOI PMC

Palva JM, et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. 2013;110:3585–3590. doi: 10.1073/pnas.1216855110. PubMed DOI PMC

Karsai M, Kaski K, Barabási A-L, Kertész J. Universal features of correlated bursty behaviour. Sci. Rep. 2012;2:397. doi: 10.1038/srep00397. PubMed DOI PMC

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI

Matěj Z, Kužel R, Nichtová L. XRD total pattern fitting applied to study of microstructure of TiO 2 films. Powder Differ. 2010;25:125–131. doi: 10.1154/1.3392371. DOI

Lin H, Xu S, Li C, Dong H, Wang X. Thermal and electrical conduction in 6.4 nm thin gold films. Nanoscale. 2013;5:4652. doi: 10.1039/c3nr00729d. PubMed DOI

Edalatpour S, Francoeur M. Size effect on the emissivity of thin films. J. Quant. Spectrosc. Radiat. Transf. 2013;118:75–85. doi: 10.1016/j.jqsrt.2012.12.012. DOI

van Zwol PJ, et al. Emissivity of freestanding membranes with thin metal coatings. J. Appl. Phys. 2015;118:213107. doi: 10.1063/1.4936851. DOI

Borghi F, Mirigliano M, Dellasega D, Milani P. Influence of the nanostructure on the electric transport properties of resistive switching cluster-assembled gold films. Appl. Surf. Sci. 2022;582:152485. doi: 10.1016/j.apsusc.2022.152485. DOI

Mukherjee A, Ankit K, Selzer M, Nestler B. Electromigration-induced surface drift and slit propagation in polycrystalline interconnects: insights from phase-field simulations. Phys. Rev. Appl. 2018;9:044004. doi: 10.1103/PhysRevApplied.9.044004. DOI

Durkan C, Schneider MA, Welland ME. Analysis of failure mechanisms in electrically stressed Au nanowires. J. Appl. Phys. 1999;86:1280–1286. doi: 10.1063/1.370882. DOI

Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ. Atomistic origin of lattice strain on stiffness of nanoparticles. Phys. Chem. Chem. Phys. 2010;12:1543. doi: 10.1039/b919982a. PubMed DOI

Mahr C, et al. Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Mater. Res. Lett. 2018;6:84–92. doi: 10.1080/21663831.2017.1396263. DOI

Weissmüller J, Duan H-L, Farkas D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater. 2010;58:1–13. doi: 10.1016/j.actamat.2009.08.008. DOI

Pike MD, et al. Atomic scale dynamics drive brain-like avalanches in percolating nanostructured networks. Nano Lett. 2020;20:3935–3942. doi: 10.1021/acs.nanolett.0c01096. PubMed DOI

Kaiser M. Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front. Neuroinform. 2010 doi: 10.3389/fninf.2010.00008. PubMed DOI PMC

Segev R, et al. Long term behavior of lithographically prepared in vitro neuronal networks. Phys. Rev. Lett. 2002;88:118102. doi: 10.1103/PhysRevLett.88.118102. PubMed DOI

Hilgetag C, O’Neill MA, Young MP. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:71–89. doi: 10.1098/rstb.2000.0550. PubMed DOI PMC

Hilgetag C-C, O’Neill MA, Young MP. Indeterminate organization of the visual system. Science. 1996;1979(271):776–777. doi: 10.1126/science.271.5250.776. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...