Engineering the structural and electrical interplay of nanostructured Au resistive switching networks by controlling the forming process
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37953278
PubMed Central
PMC10641076
DOI
10.1038/s41598-023-46990-4
PII: 10.1038/s41598-023-46990-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Networks of random-assembled gold clusters produced in the gas phase show resistive switching (RS) activity at room temperature and they are suitable for the fabrication of devices for neuromorphic data processing and classification. Fully connected cluster-assembled nanostructured Au films are characterized by a granular structure rich of interfaces, grain boundaries and crystalline defects. Here we report a systematic characterization of the electroforming process of the cluster-assembled films demonstrating how this process affects the interplay between the nano- and mesoscale film structure and the neuromorphic characteristics of the resistive switching activity. The understanding and the control of the influence of the resistive switching forming process on the organization of specific structures at different scales of the cluster-assembled films, provide the possibility to engineer random-assembled neuromorphic architectures for data processing task.
CIMaINa and Dipartimento di Fisica Università degli Studi di Milano Via Celoria 16 20133 Milan Italy
Zobrazit více v PubMed
Christensen DV, et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2022;2:022501. doi: 10.1088/2634-4386/ac4a83. DOI
Scharnhorst, K. S. et al. Atomic switch networks as complex adaptive systems. Jpn. J. Appl. Phys.57, 03ED02 (2018).
Varghese S, Elemans JAAW, Rowan AE, Nolte RJM. Molecular computing: Paths to chemical turing machines. Chem. Sci. 2015;6:6050–6058. doi: 10.1039/C5SC02317C. PubMed DOI PMC
Jaeger H. Towards a generalized theory comprising digital, neuromorphic and unconventional computing. Neuromorphic Comput. Eng. 2021;1:012002. doi: 10.1088/2634-4386/abf151. DOI
Ielmini D, Wong H-SP. In-memory computing with resistive switching devices. Nat. Electron. 2018;1:333–343. doi: 10.1038/s41928-018-0092-2. DOI
Jacob AP, et al. Scaling challenges for advanced CMOS devices. Int. J. High Speed Electron. Syst. 2017;26:1740001. doi: 10.1142/S0129156417400018. DOI
Heath JR, Kuekes PJ, Snider GS, Williams RS. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science. 1998;1979(280):1716–1721. doi: 10.1126/science.280.5370.1716. DOI
Chua L. Memristor—The missing circuit element. IEEE Trans. Circuit Theory. 1971;18:507–519. doi: 10.1109/TCT.1971.1083337. DOI
Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019;18:309–323. doi: 10.1038/s41563-019-0291-x. PubMed DOI
Eric R. Kandel, J. H. S. e T. M. J. Principles of neural science. (Health Professions Division, 2000).
Mirigliano M, et al. A binary classifier based on a reconfigurable dense network of metallic nanojunctions. Neuromorphic Comput. Eng. 2021;1:024007. doi: 10.1088/2634-4386/ac29c9. DOI
Milano G, et al. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks. Adv. Intell. Syst. 2020;2:2000096. doi: 10.1002/aisy.202000096. DOI
Manning HG, et al. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. 2018;9:3219. doi: 10.1038/s41467-018-05517-6. PubMed DOI PMC
Sandouk EJ, Gimzewski JK, Stieg AZ. Multistate resistive switching in silver nanoparticle films. Sci. Technol. Adv. Mater. 2015;16:045004. doi: 10.1088/1468-6996/16/4/045004. PubMed DOI PMC
Levina A, Herrmann JM, Geisel T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 2007;3:857–860. doi: 10.1038/nphys758. DOI
Friedman N, et al. Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 2012;108:208102. doi: 10.1103/PhysRevLett.108.208102. PubMed DOI
Feller MB. Spontaneous correlated activity in developing neural circuits. Neuron. 1999;22:653–656. doi: 10.1016/S0896-6273(00)80724-2. PubMed DOI
Lonardoni D, et al. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Comput. Biol. 2017;13:e1005672. doi: 10.1371/journal.pcbi.1005672. PubMed DOI PMC
Du C, et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017;8:2204. doi: 10.1038/s41467-017-02337-y. PubMed DOI PMC
Boybat I, et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 2018;9:2514. doi: 10.1038/s41467-018-04933-y. PubMed DOI PMC
Rajendran B, et al. Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Trans. Electron. Devices. 2013;60:246–253. doi: 10.1109/TED.2012.2227969. DOI
Milano G, et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022;21:195–202. doi: 10.1038/s41563-021-01099-9. PubMed DOI
Sillin HO, et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology. 2013;24:384004. doi: 10.1088/0957-4484/24/38/384004. PubMed DOI
Mallinson, J. B. et al. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv.5, (2019). PubMed PMC
Diaz-Alvarez A, et al. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019;9:14920. doi: 10.1038/s41598-019-51330-6. PubMed DOI PMC
Mirigliano M, et al. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Adv. 2019;1:3119–3130. doi: 10.1039/C9NA00256A. PubMed DOI PMC
Mirigliano, M. & Milani, P. Electrical conduction in nanogranular cluster-assembled metallic films. Adv Phys X6, (2021).
Mirigliano M, et al. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. Nanotechnology. 2020;31:234001. doi: 10.1088/1361-6528/ab76ec. PubMed DOI
Mirigliano M, et al. Anomalous electrical conduction and negative temperature coefficient of resistance in nanostructured gold resistive switching films. Sci. Rep. 2020;10:19613. doi: 10.1038/s41598-020-76632-y. PubMed DOI PMC
Wegner K, Piseri P, Tafreshi HV, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D Appl. Phys. 2006;39:R439–R459. doi: 10.1088/0022-3727/39/22/R02. DOI
Barborini E, Piseri P, Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. D Appl. Phys. 1999;32:L105–L109. doi: 10.1088/0022-3727/32/21/102. DOI
Piseri P, Podestà A, Barborini E, Milani P. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev. Sci. Instrum. 2001;72:2261–2267. doi: 10.1063/1.1361082. DOI
Mazzoni A, et al. On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE. 2007;2:e439. doi: 10.1371/journal.pone.0000439. PubMed DOI PMC
Palva JM, et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. 2013;110:3585–3590. doi: 10.1073/pnas.1216855110. PubMed DOI PMC
Karsai M, Kaski K, Barabási A-L, Kertész J. Universal features of correlated bursty behaviour. Sci. Rep. 2012;2:397. doi: 10.1038/srep00397. PubMed DOI PMC
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Matěj Z, Kužel R, Nichtová L. XRD total pattern fitting applied to study of microstructure of TiO 2 films. Powder Differ. 2010;25:125–131. doi: 10.1154/1.3392371. DOI
Lin H, Xu S, Li C, Dong H, Wang X. Thermal and electrical conduction in 6.4 nm thin gold films. Nanoscale. 2013;5:4652. doi: 10.1039/c3nr00729d. PubMed DOI
Edalatpour S, Francoeur M. Size effect on the emissivity of thin films. J. Quant. Spectrosc. Radiat. Transf. 2013;118:75–85. doi: 10.1016/j.jqsrt.2012.12.012. DOI
van Zwol PJ, et al. Emissivity of freestanding membranes with thin metal coatings. J. Appl. Phys. 2015;118:213107. doi: 10.1063/1.4936851. DOI
Borghi F, Mirigliano M, Dellasega D, Milani P. Influence of the nanostructure on the electric transport properties of resistive switching cluster-assembled gold films. Appl. Surf. Sci. 2022;582:152485. doi: 10.1016/j.apsusc.2022.152485. DOI
Mukherjee A, Ankit K, Selzer M, Nestler B. Electromigration-induced surface drift and slit propagation in polycrystalline interconnects: insights from phase-field simulations. Phys. Rev. Appl. 2018;9:044004. doi: 10.1103/PhysRevApplied.9.044004. DOI
Durkan C, Schneider MA, Welland ME. Analysis of failure mechanisms in electrically stressed Au nanowires. J. Appl. Phys. 1999;86:1280–1286. doi: 10.1063/1.370882. DOI
Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ. Atomistic origin of lattice strain on stiffness of nanoparticles. Phys. Chem. Chem. Phys. 2010;12:1543. doi: 10.1039/b919982a. PubMed DOI
Mahr C, et al. Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Mater. Res. Lett. 2018;6:84–92. doi: 10.1080/21663831.2017.1396263. DOI
Weissmüller J, Duan H-L, Farkas D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater. 2010;58:1–13. doi: 10.1016/j.actamat.2009.08.008. DOI
Pike MD, et al. Atomic scale dynamics drive brain-like avalanches in percolating nanostructured networks. Nano Lett. 2020;20:3935–3942. doi: 10.1021/acs.nanolett.0c01096. PubMed DOI
Kaiser M. Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front. Neuroinform. 2010 doi: 10.3389/fninf.2010.00008. PubMed DOI PMC
Segev R, et al. Long term behavior of lithographically prepared in vitro neuronal networks. Phys. Rev. Lett. 2002;88:118102. doi: 10.1103/PhysRevLett.88.118102. PubMed DOI
Hilgetag C, O’Neill MA, Young MP. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:71–89. doi: 10.1098/rstb.2000.0550. PubMed DOI PMC
Hilgetag C-C, O’Neill MA, Young MP. Indeterminate organization of the visual system. Science. 1996;1979(271):776–777. doi: 10.1126/science.271.5250.776. PubMed DOI