Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35852418
PubMed Central
PMC9295367
DOI
10.1093/gigascience/giac065
PII: 6646445
Knihovny.cz E-zdroje
- Klíčová slova
- arthropods, biodiversity big data integration, biodiversity inventory, comparability, data generation, harmonization, metabarcoding, modular structure, reproducibility,
- MeSH
- biodiverzita MeSH
- členovci * genetika MeSH
- longitudinální studie MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other. There are ongoing efforts to improve standardization for the reporting of inventory data. However, harmonization at the stage of generating metabarcode data has yet to be addressed. A modular framework for harmonized data generation offers a pathway to navigate the complex structure of terrestrial metazoan biodiversity. Here, through our collective expertise as practitioners, method developers, and researchers leading metabarcoding initiatives to inventory terrestrial biodiversity, we seek to initiate a harmonized framework for metabarcode data generation, with a terrestrial arthropod module. We develop an initial set of submodules covering the 5 main steps of metabarcode data generation: (i) sample acquisition; (ii) sample processing; (iii) DNA extraction; (iv) polymerase chain reaction amplification, library preparation, and sequencing; and (v) DNA sequence and metadata deposition, providing a backbone for a terrestrial arthropod module. To achieve this, we (i) identified key points for harmonization, (ii) reviewed the current state of the art, and (iii) distilled existing knowledge within submodules, thus promoting best practice by providing guidelines and recommendations to reduce the universe of methodological options. We advocate the adoption and further development of the terrestrial arthropod module. We further encourage the development of modules for other biodiversity fractions as an essential step toward large-scale biodiversity synthesis through harmonization.
Centre for Biodiversity Genomics University of Guelph N1G2W1 Guelph Canada
Centre for Biodiversity Monitoring Zoological Research Museum Alexander Koenig D 53113 Bonn Germany
Department of Biogeography Trier University D 54296 Trier Germany
Department of Biological Sciences University of Cyprus 1678 Nicosia Cyprus
Department of Environment and Agronomy INIA CSIC 28040 Madrid Spain
Department of Life Sciences Imperial College London SW7 2AZ London UK
Department of Life Sciences Natural History Museum SW7 5BD London UK
Faculty of Science University of South Bohemia 37005 Ceske Budejovice Czech Republic
Naturalis Biodiversity Center 2300 RA Leiden The Netherlands
School of Environmental Sciences University of Guelph N1G2W1 Guelph Canada
Zobrazit více v PubMed
Ji Y, Ashton L, Pedley SM, et al. . Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett. 2013;16(10):1245–57. PubMed
Porter TM, Hajibabaei M.. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol. 2018;27(2):313–38. PubMed
Bohan DA, Vacher C, Tamaddoni-Nezhad A, et al. . Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends Ecol Evol. 2017;32(7):477–87. PubMed
Bush A, Sollmann R, Wilting A, et al. . Connecting Earth observation to high-throughput biodiversity data. Nat Ecol Evol. 2017;1(7):1–9. PubMed
Taberlet P, Bonin A, Zinger L, et al. . Environmental DNA: For Biodiversity Research and Monitoring. Oxford: Oxford University Press, 2018:1–253.. doi: 10.1093/oso/9780198767220.001.0001. DOI
Bush A, Catullo R, Mokany K, et al. . Incorporating existing thermal tolerance into projections of compositional turnover under climate change. Global Ecol Biogeogr. 2019;28(6):851–61.
Piper AM, Batovska J, Cogan NOI, et al. . Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience. 2019;8(8):1–22. PubMed PMC
Gilbert JA, Jansson JK, Knight R.. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12(1):1–4. PubMed PMC
Gilbert JA, Meyer F, Antonopoulos D, et al. . Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards Genomic Sci. 2010;3(3):243–8. PubMed PMC
Ovaskainen O, Abrego N, Somervuo P, et al. . Monitoring Fungal Communities With the Global Spore Sampling Project. Front Ecol Evol. 2020;7:1–9.
Davies N, Meyer C, Gilbert JA, et al. . A call for an international network of genomic observatories (GOs). Gigascience. 2012;1(1):1–5. PubMed PMC
Davies N, Field D, Amaral-Zettler L, et al. . The founding charter of the Genomic Observatories Network. Gigascience. 2014;3(1):1–5. PubMed PMC
Arribas P, Andújar C, Bidartondo MI, et al. . Connecting high-throughput biodiversity inventories—opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol. 2021;30(5):1120–35. PubMed PMC
Guralnick R, Walls R, Jetz W.. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography. 2018;41(5):713–25.
Deck J, Gaither MR, Ewing R, et al. . The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biol. 2017;15(8):e2002925. PubMed PMC
Riginos C, Crandall ED, Liggins L, et al. . Building a global genomics observatory: using GEOME (the Genomic Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic data and metadata for biodiversity research. Mol Ecol Resour. 2020;20(6):1458–69. PubMed
Creedy TJ, Andújar C, Meramveliotakis E, et al. . Coming of age for COI metabarcoding of whole organism community DNA: towards bioinformatic harmonisation. Mol Ecol Resour. 2022;22(3):847–61. PubMed PMC
Caporaso JG, Paszkiewicz K, Field D, et al. . The Western English Channel contains a persistent microbial seed bank. ISME J. 2012;6(6):1089–93. PubMed PMC
Marotz C, Amir A, Humphrey G, et al. . DNA extraction for streamlined metagenomics of diverse environmental samples. BioTechniques. 2017;62(6):290–3. PubMed
Alberti A. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci Data. 2017;4:1700932017. PubMed PMC
Gorsky G, Bourdin G, Lombard F, et al. . Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific Expedition (2016–2018). Front Marine Sci. 2019;6:1–20.
Kopf A. The ocean sampling day consortium. Gigascience. 2015;4(1):1–5. PubMed PMC
Dickie IA, Boyer S, Buckley HL, et al. . Towards robust and repeatable sampling methods in eDNA based studies. Mol Ecol Resour. 2018;18(5):940–52. PubMed
Canonico G, Buttigieg PL, Montes E, et al. . Global observational needs and resources for marine biodiversity. Front Marine Sci. 2019;6:1–20.
Murray DC, Coghlan ML, Bunce M.. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS One. 2015;10(4):e0124671. PubMed PMC
Zizka VMA, Elbrecht V, Macher JN, et al. . Assessing the influence of sample tagging and library preparation on DNA metabarcoding. Mol Ecol Resour. 2019;19(4):893–9. PubMed
Blackman RC, Mächler E, Altermatt F, et al. . Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring—the need for calibration experiments. Metabarcoding Metagenomics. 2019;3:49–57.
Zaiko A, Greenfield P, Abbott C, et al. . Towards reproducible metabarcoding data: Lessons from an international cross-laboratory experiment. Mol Ecol Resour. 2022;22(2):519–38. PubMed
Philippot L, Ritz K, Pandard P, et al. . Standardisation of methods in soil microbiology: progress and challenges. FEMS Microbiol Ecol. 2012;82(1):1–10. PubMed
Stork NE, McBroom J, Gely C, et al. . New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci. 2015;112(24):7519–23. PubMed PMC
Goulson D. The insect apocalypse, and why it matters. Curr Biol. 2019;29(19):R967–71. PubMed
Harvey JA, Heinen R, Armbrecht I, et al. . International scientists formulate a roadmap for insect conservation and recovery. Nat Ecol Evol. 2020;4(2):174–6. PubMed
Seebens H, Blackburn TM, Dyer EE, et al. . Global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci. 2018;115(10):E2264–73. PubMed PMC
Liu M, Clarke LJLJ, Baker SC, et al. . A practical guide to DNA metabarcoding for entomological ecologists. Ecol Entomol. 2020;45(3):373–85.
Yu DW, Ji Y, Emerson BC, et al. . Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol. 2012;3(4):613–23.
Andújar C, Arribas P, Gray C, et al. . Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol Ecol. 2018;27(1):146–66. PubMed
Elbrecht V, Braukmann TW, Ivanova NV, et al. . Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019;7(e7745):1–23. PubMed PMC
Krehenwinkel H, Fong M, Kennedy S, et al. . The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota. PLoS One. 2018;13(1):e0189188. PubMed PMC
Krehenwinkel H, Kennedy SR, Rueda A, et al. . Scaling up DNA barcoding—primer sets for simple and cost efficient arthropod systematics by multiplex PCR and Illumina amplicon sequencing. Methods Ecol Evol. 2018;9(11):2181–93.
Braukmann TWA, Ivanova NV, Prosser SWJ, et al. . Metabarcoding a diverse arthropod mock community. Mol Ecol Resour. 2019;19(3):711–27. PubMed PMC
D'Souza ML, van der Bank M, Shongwe Z, et al. . Biodiversity baselines: tracking insects in Kruger National Park with DNA barcodes. Biol Conserv. 2021;256:109034.
Basset Y, Springate ND, Aberlenc HP, et al. . A review of methods for sampling arthropods in tree canopies. In: Strok NE, Adis J, Didham RK, eds. Canopy Arthropods. London: Chapman and Hall.
Montgomery GA, Belitz MW, Guralnick RP, et al. . Standards and best practices for monitoring and benchmarking insects. Front Ecol Evol. 2021;8:1–18.
Geiger MF, Moriniere J, Hausmann A, et al. . Testing the Global Malaise Trap Program—how well does the current barcode reference library identify flying insects in Germany?. Biodiversity Data J. 2016;4:e10671. PubMed PMC
Marquina D, Esparza-Salas R, Roslin T, et al. . Establishing arthropod community composition using metabarcoding: surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol Ecol Resour. 2019;19(6):1516–30. PubMed PMC
Barsoum N, Bruce C, Forster J, et al. . The devil is in the detail: metabarcoding of arthropods provides a sensitive measure of biodiversity response to forest stand composition compared with surrogate measures of biodiversity. Ecol Indic. 2019;101:313–23.
Ritter CD, Häggqvist S, Karlsson D, et al. . Biodiversity assessments in the 21st century: the potential of insect traps to complement environmental samples for estimating eukaryotic and prokaryotic diversity using high-throughput DNA metabarcoding. Genome. 2019;62(3):147–59. PubMed
Watts C, Dopheide A, Holdaway R, et al. . DNA metabarcoding as a tool for invertebrate community monitoring: a case study comparison with conventional techniques. Austral Entomol. 2019;58(3):675–86.
Hausmann A, Segerer AH, Greifenstein T, et al. . Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol Evol. 2020;10(9):4009–20. PubMed PMC
DeWaard JR, Levesque-Beaudin V, DeWaard SL, et al. . Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding. Genome. 2019;62(3):85–95. PubMed
Malaise R. A new insect-trap. Entomol Tidskr. 1937;58:148–60.
Schmidt O, Schmidt S, Häuser CL, et al. . Using Malaise traps for collecting Lepidoptera (Insecta), with notes on the preparation of Macrolepidoptera from ethanol. Biodiversity Data J. 2019;7:1–12. PubMed PMC
Karlsson D, Forshage M, Holston K, et al. . The data of the Swedish Malaise Trap Project, a countrywide inventory of Sweden's insect fauna. Biodiversity Data J. 2020;8:1–28. PubMed PMC
Hoekman D, Levan KE, Ball GE, et al. . Design for ground beetle abundance and diversity sampling within the National Ecological Observatory Network. Ecosphere. 2017;8(4):1–17. PubMed
Nakamura S, Tamura S, Taki H, et al. . Propylene glycol: a promising preservative for insects, comparable to ethanol, from trapping to DNA analysis. Entomol Exp Appl. 2020;168(2):158–65.
Steinke D, Braukmann TWA, Manerus L, et al. . Effects of Malaise trap spacing on species richness and composition of terrestrial arthropod bulk samples. Metabarcoding Metagenomics. 2021;5:43–50.
Szewczyk TM, McCain CM.. Disentangling elevational richness: a multi-scale hierarchical Bayesian occupancy model of Colorado ant communities. Ecography. 2019;42(5):977–88.
Powney GD, Carvell C, Edwards M, et al. . Widespread losses of pollinating insects in Britain. Nat Commun. 2019;10(1):1–6. PubMed PMC
Weißbecker C, Buscot F, Wubet T.. Preservation of nucleic acids by freeze-drying for next generation sequencing analyses of soil microbial communities. J Plant Ecol. 2017;10(1):81–90.
Marquina D, Buczek M, Ronquist F, et al. . The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ. 2021;9:e10799. PubMed PMC
Martoni F, Nogarotto E, Piper AM, et al. . Propylene glycol and non-destructive DNA extractions enable preservation and isolation of insect and hosted bacterial DNA. Agriculture. 2021;11(1):77.
de Kerdrel GA, Andersen JC, Kennedy SR, et al. . Rapid and cost-effective generation of single specimen multilocus barcoding data from whole arthropod communities by multiple levels of multiplexing. Sci Rep. 2020;10(1):1–12. PubMed PMC
Hertz M. Huomioita petokuoriaisten olinpaikoista. Luonnon Yst. 1927;31:218–22.
Brooks DR, Bater JE, Clark SJ, et al. . Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J Appl Ecol. 2012;49(5):1009–19.
Brown GR, Matthews IM.. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol. 2016;6(12):3953–64. PubMed PMC
Ward DF, New TR, Yen AL.. Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. J Insect Conservation. 2001;5(1):47–53.
Hohbein RR, Conway CJ.. Pitfall traps: a review of methods for estimating arthropod abundance. Wildlife Soc Bull. 2018;42(4):597–606.
Missa O, Basset Y, Alonso A, et al. . Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches. J Insect Conservation. 2009;13(1):103–18.
Deagle BE, Thomas AC, McInnes JC, et al. . Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data?. Mol Ecol. 2019;28(2):391–406. PubMed PMC
Elbrecht V, Peinert B, Leese F. Sorting things out: assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol Evol. 2017;7(17):6918–26. PubMed PMC
Creedy TJ, Ng WS, Vogler AP.. Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy. Ecol Evol. 2019;9(6):3105–16. PubMed PMC
Elbrecht V, Bourlat S, Hörren T, et al. . Pooling size sorted malaise trap fractions to maximise taxon recovery with metabarcoding. PeerJ. 2021;9:e12177. PubMed PMC
Cardoso P, Leather SR.. Predicting a global insect apocalypse. Insect Conservation Diversity. 2019;12(4):263–7.
Zinger L, Bonin A, Alsos IG, et al. . DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Mol Ecol. 2019;28(8):1857–62. PubMed
Ärje J, Melvad C, Jeppesen MR, et al. . Automatic image-based identification and biomass estimation of invertebrates. Methods Ecol Evol. 2020;11(8):922–31.
Valan M, Makonyi K, Maki A, et al. . Automated taxonomic identification of insects with expert-level accuracy using effective feature transfer from convolutional networks. Syst Biol. 2019;68(6):876–95. PubMed PMC
Valan M, Vondráček D, Ronquist F.. Awakening a taxonomist's third eye: exploring the utility of computer vision and deep learning in insect systematics. Syst Entomol. 2021;46(4):757–66.
Ronquist F, Forshage M, Häggqvist S, et al. . Completing Linnaeus's inventory of the Swedish insect fauna: only 5,000 species left?. PLoS One. 2020;15(3):e0228561. PubMed PMC
deWaard JR, Ratnasingham S, Zakharov EV, et al. . A reference library for the identification of Canadian invertebrates: 1.5 million DNA barcodes, voucher specimens, and genomic samples. Sci Data. 2019;6(1)1–12. PubMed PMC
Andújar C, Creedy TJ, Arribas P, et al. . Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data. Mol Ecol Resour. 2021;21(6):1772–87. PubMed
Creedy TJTJ, Norman H, Tang CQCQ, et al. . A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Mol Ecol Resour. 2020;20(1):40–53. PubMed
Nielsen M, Gilbert MTP, Pape T, et al. . A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity. Environ DNA. 2019;1(2):144–54.
Arribas P, Andújar C, Hopkins K, et al. . Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil. Methods Ecol Evol. 2016;7(9):1071–81.
Deiner K, Walser JC, Mächler E, et al. . Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv. 2015;183:53–63.
Majaneva M, Diserud OH, Eagle SHC, et al. . Choice of DNA extraction method affects DNA metabarcoding of unsorted invertebrate bulk samples. Metabarcoding Metagenomics. 2018;2:1–12.
Sellers GS, Di Muri C, Gómez A, et al. . Mu-DNA: A modular universal DNA extraction method adaptable for a wide range of sample types. Metabarcoding Metagenomics. 2018;2:e24556.
Zinger L, Lionnet C, Benoiston A-S, et al. . metabaR: an R package for the evaluation and improvement of DNA metabarcoding data quality. Methods Ecol Evol. 2021;12(4):586–92.
Jarman SN, Berry O, Bunce M.. The value of environmental DNA biobanking for long-term biomonitoring. Nat Ecol Evol. 2018;2(8):1192–3. PubMed
Andújar C, Arribas P, Yu DW, et al. . Why the COI barcode should be the community DNA metabarcode for the Metazoa. Mol Ecol. 2018;27(20):3968–75. PubMed
Beng KC, Tomlinson KW, Shen XH, et al. . The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci Rep. 2016;6(1):1–13. PubMed PMC
Elbrecht V, Leese F, Nichols SJ.. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front Environ Sci. 2017;5:1–11.
Leray M, Yang JY, Meyer CP, et al. . A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10(1):34. PubMed PMC
Arribas P, Andújar C, Salces-Castellano A, et al. . The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Mol Ecol. 2021;30(1):48–61. PubMed
Yang C, Bohmann K, Wang X, et al. . Biodiversity Soup II: A bulk-sample metabarcoding pipeline emphasizing error reduction. Methods Ecol Evol. 2021;12(7):1252–64.
Haas BJ, Gevers D, Earl AM, et al. . Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504. PubMed PMC
Elbrecht V, Vamos EE, Steinke D, et al. . Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ. 2018;6:e4644. PubMed PMC
Nichols RV, Vollmers C, Newsom LA, et al. . Minimizing polymerase biases in metabarcoding. Mol Ecol Resour. 2018;18(5):927–39. PubMed
Sze MA, Schloss PD.. The impact of DNA polymerase and number of rounds of amplification in PCR on 16S rRNA gene sequence data. mSphere. 2019;4(3):1–13. PubMed PMC
Ahn JH, Hong IP, Bok JI, et al. . Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J Microbiol. 2012;50(5):735–45. PubMed
Gury J, Zinger L, Gielly L, et al. . Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies. Electrophoresis. 2008;29(11):2437–44. PubMed
Buchner D, Beermann AJ, Leese F, et al. . Cooking small and large portions of “biodiversity-soup”: Miniaturized DNA metabarcoding PCRs perform as good as large-volume PCRs. Ecol Evol. 2021;11(13):9092–9.
Ficetola GF, Pansu J, Bonin A, et al. . Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour. 2015;15(3):543–56. PubMed
Dopheide A, Xie D, Buckley TR, et al. . Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol. 2019;10(1):120–33.
Alberdi A, Aizpurua O, Gilbert MTP, et al. . Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9(1):134–47.
Schnell IB, Bohmann K, Gilbert MTP.. Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour. 2015;15(6):1289–303. PubMed
Bohmann K, Elbrecht V, Carøe C, et al. . Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol Ecol Resour. 2022;22(4):1231–46. PubMed PMC
Bista I, Carvalho GR, Tang M, et al. . Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol Ecol Resour. 2018;18(5):1020–34. PubMed
Esling P, Lejzerowicz F, Pawlowski J.. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res. 2015;43(5):2513–24. PubMed PMC
Smets W, Leff JW, Bradford MA, et al. . A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem. 2016;96:145–51.
Ushio M, Murakami H, Masuda R, et al. . Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenomics. 2018;2:1–15.
Elbrecht V, Leese F, Rockström J, et al. . Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS One. 2015;10(7):e0130324. PubMed PMC
Carøe C, Tagsteady Bohmann K.. A metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Mol Ecol Resour. 2020;20(6):1620–31. PubMed
Singer GAC, Fahner NA, Barnes JG, et al. . Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: a case study of eDNA metabarcoding seawater. Sci Rep. 2019;9(1):1–12. PubMed PMC
Hajibabaei M, Porter TM, Wright M, et al. . COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One. 2019;14(9):e0220953. PubMed PMC
Tedersoo L, Ramirez KS, Nilsson RH, et al. . Standardizing metadata and taxonomic identification in metabarcoding studies. Gigascience. 2015;4(1):1–4. PubMed PMC
Wieczorek J, Bloom D, Guralnick R, et al. . Darwin core: an evolving community-developed biodiversity data standard. PLoS One. 2012;7(1):e29715. PubMed PMC
Yilmaz P, Kottmann R, Field D, et al. . Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29(5):415–20. PubMed PMC