Completing Linnaeus's inventory of the Swedish insect fauna: Only 5,000 species left?

. 2020 ; 15 (3) : e0228561. [epub] 20200304

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32130216

Despite more than 250 years of taxonomic research, we still have only a vague idea about the true size and composition of the faunas and floras of the planet. Many biodiversity inventories provide limited insight because they focus on a small taxonomic subsample or a tiny geographic area. Here, we report on the size and composition of the Swedish insect fauna, thought to represent roughly half of the diversity of multicellular life in one of the largest European countries. Our results are based on more than a decade of data from the Swedish Taxonomy Initiative and its massive inventory of the country's insect fauna, the Swedish Malaise Trap Project The fauna is considered one of the best known in the world, but the initiative has nevertheless revealed a surprising amount of hidden diversity: more than 3,000 new species (301 new to science) have been documented so far. Here, we use three independent methods to analyze the true size and composition of the fauna at the family or subfamily level: (1) assessments by experts who have been working on the most poorly known groups in the fauna; (2) estimates based on the proportion of new species discovered in the Malaise trap inventory; and (3) extrapolations based on species abundance and incidence data from the inventory. For the last method, we develop a new estimator, the combined non-parametric estimator, which we show is less sensitive to poor coverage of the species pool than other popular estimators. The three methods converge on similar estimates of the size and composition of the fauna, suggesting that it comprises around 33,000 species. Of those, 8,600 (26%) were unknown at the start of the inventory and 5,000 (15%) still await discovery. We analyze the taxonomic and ecological composition of the estimated fauna, and show that most of the new species belong to Hymenoptera and Diptera groups that are decomposers or parasitoids. Thus, current knowledge of the Swedish insect fauna is strongly biased taxonomically and ecologically, and we show that similar but even stronger biases have distorted our understanding of the fauna in the past. We analyze latitudinal gradients in the size and composition of known European insect faunas and show that several of the patterns contradict the Swedish data, presumably due to similar knowledge biases. Addressing these biases is critical in understanding insect biomes and the ecosystem services they provide. Our results emphasize the need to broaden the taxonomic scope of current insect monitoring efforts, a task that is all the more urgent as recent studies indicate a possible worldwide decline in insect faunas.

Zobrazit více v PubMed

Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L et al. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841–844. 10.1038/416841a PubMed DOI

Hamilton AJ, Basset Y, Benke KK, Grimbacher PS, Miller SE, Novotny V et al. 2010. Quantifying uncertainty in estimation of tropical arthropod species richness. American Naturalist 176: 90–95. 10.1086/652998 PubMed DOI

Stork NE, McBroom J, Gely C, Hamilton AJ. 2015. New approaches narrow global species estimates for beetles, insects and terrestrial arthropods. Proceedings of the National Academy of Sciences of the USA 112: 7519–7523. 10.1073/pnas.1502408112 PubMed DOI PMC

Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 2011. How Many Species Are There on Earth and in the Ocean? PLoS Biology 9: e1001127 10.1371/journal.pbio.1001127 PubMed DOI PMC

Bassett Y et al. 2012. Arthropod diversity in a tropical forest. Science 338: 1481–1484. 10.1126/science.1226727 PubMed DOI

Wirta H, Varkonyi G, Rasmussen C, Kaartinen R, Schmidt NM, Hebert PDN et al. 2015. Establishing a community-wide DNA barcode library as a new tool for arctic research. Molecular Ecology Resources 16: 809–822. 10.1111/1755-0998.12489 PubMed DOI

Ronquist F, Gärdenfors U. 2003. Taxonomy and biodiversity inventories: Time to deliver. Trends in Ecology and Evolution 18: 269–270.

Miller G. 2005. Linnaeus’s legacy carries on. Science 307: 1038–1039. PubMed

Karlsson D, Pape T, Johanson KA, Liljeblad J, Ronquist F. 2005. Svenska Malaisefälleprojektet, eller hur många arter steklar, flugor och myggor finns i Sverige? Entomologisk Tidskrift 126: 43–53.

Karlsson D, Hartop E, Forshage M, Jaschhof M, Ronquist F. in press The Swedish Malaise trap project: a 15 year retrospective on a countrywide insect inventory. Biodiversity Data Journal. PubMed PMC

Townes H. 1972. A light weight Malaise trap. Entomological News 83: 239–247.

Gärdenfors U, Hall R, Hallingbäck T, Hansson HG, Hedström L. 2003. Djur, svampar och växter i Sverige. Förteckning över antal arter per familj. Uppsala: SLU Publikationsservice. 89 pp.

de Jong Y, Verbeek M, Michelsen V, Bjørn PdP, Los W, Steeman F et al. 2014. Fauna Europaea–all European animal species on the web. Biodiversity Data Journal 2: e4034. PubMed PMC

Linnaeus C. 1761. Fauna Svecica. Stockholm: Laurentii Salvii. 578 pp.

Tullgren A, Wahlgren E. 1922. Svenska insekter. En orienterande handbok vid studiet av vårt lands insektfauna. Stockholm, Norstedt. 812 pp.

Google Dataset Publishing Language: geo canonical concept dataset, countries table. URL: https://developers.google.com/public-data/docs/canonical/countries_csv (accessed on June 29, 2017).

EuroStat: NUTS Area 2013. URL: http://ec.europa.eu/eurostat/documents/205002/6786255/AreaSize_20161109.xlsx (accessed on June 29, 2017).

List of countries and dependencies by area. URL: https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_area (accessed on June 29, 2017).

Landin B-O. 1967. Fältfauna–Insekter. Del 1. Stockholm: Natur & Kultur. 394 pp.

Landin B-O. 1970. Fältfauna–Insekter. Del 2:1. Stockholm: Natur & Kultur. Pp. 1–380.

Landin B-O. 1971. Fältfauna–Insekter. Del 2:2. Stockholm: Natur & Kultur. Pp. 381–1053.

Goulet H, Huber JT (eds). 1993. Hymenoptera of the world: An identification guide to families. Ottawa: Agriculture Canada; 680 pp.

Oosterbroek P. 2006. The European families of the Diptera: identification, diagnosis, biology. Zeist, The Netherlands: KNNV Uitgevereij; 205 pp.

Seber GAF. 1982. The Estimation of Animal Abundance and Related Parameters. Caldwell, New Jersey: Blackburn Press.

Southwood TRE, Henderson P. 2000. Ecological Methods (3rd ed.). Oxford: Blackwell Science.

Chapman DG. 1951. Some properties of the hypergeometric distribution with applications to zoological sample censuses. University of California publications in statistics, Volume 1, Number 7. Berkeley: University of California Press.

Oksanen JF, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. 2017. vegan: Community Ecology Package. R package version 2.4–3. URL: http://CRAN.R-project.org/package=vegan (accessed on July 1, 2017).

Cardoso P, Rigal F, Carvalho JC. 2018. Package ‘BAT’. Biodiversity Assessment Tools. Version 1.6.0. URL: https://cran.r-project.org/web/packages/BAT/ (accessed on December 4, 2019).

Cardoso P, Rigal F, Carvalho JC. 2015. BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution 6: 232–236.

Magurran AE. 2003. Measuring Biological Diversity. Oxford: Blackwell. PubMed

Chao A. 1984. Non-parametric estimation of classes in a population. Scandinavian Journal of Statistics 11: 265–270.

Chao A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791. PubMed

Colwell RK, Coddington JA. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 345: 101–118. 10.1098/rstb.1994.0091 PubMed DOI

Serramo Lopez LC, de Aguiar Fracasso MP, Oliveira Mesquita D, Torre Palma AR, Riul P. 2012. The relationship between percentage singletons and sampling effort: a new approach to reduce the bias of richness estimates. Ecological Indicators 14: 164–169.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Häggqvist S, Ulefors SOU, Ronquist F. 2015. A new species group in Megaselia, the lucifrons group, with description of a new species (Diptera: Phoridae). ZooKeys 512: 89–108. PubMed PMC

Chao A, Jost L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533–2547. 10.1890/11-1952.1 PubMed DOI

Gauld I. 1987. Some factors affecting the composition of tropical ichneumonid faunas. Biological Journal of the Linnean Society 30: 299–312.

Janzen DH. 1981. The peak in North American ichneumonid species richness lies between 38° and 42°N. Ecology 62: 532–537.

Noyes JS. 1989. The diversity of Hymenoptera in the tropics with special reference to Parasitica in Sulawesi. Ecological Entomology 14: 197–207.

Jones OR, Purvis A, Quicke DLJ. 2012. Latitudinal gradients in taxonomic overdescription rate affect macroecological inferences using species list data. Ecography 35: 333–340.

Quicke DLJ. 2012. We know too little about parasitoid wasp distributions to draw any conclusions about latitudinal trends in species richness, body size and biology. PLoS ONE 7: e32101 10.1371/journal.pone.0032101 PubMed DOI PMC

Rodriguez JJ, Fernández-Triana JL, Smith MA, Janzen DH, Hallwachs W, Erwin TL et al. 2012. Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conservation and Diversity 6: 530–536.

Veijalainen A, Wahlberg N, Broad GR, Erwin TL, Longino JT, Sääksjärvi IE. 2012. Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. Proceedings of the Royal Society B: Biological Sciences 279: 4694–4698. 10.1098/rspb.2012.1664 PubMed DOI PMC

Borkent A, Brown B, Adler PH, de Souza Amorim D, Barber K, Bickel D et al. 2018. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402: 53–90. 10.11646/zootaxa.4402.1.3 PubMed DOI

Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA. 2018. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology 18: 21 10.1186/s12898-018-0176-x PubMed DOI PMC

Fontaine B, van Achterberg K, Alonso-Zarazaga MA, Araujo R, Asche M, Aspöck H et al., 2012. New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLOS ONE 7: e36881 10.1371/journal.pone.0036881 PubMed DOI PMC

Hebert PD, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Baudin V, Milton MA et al. 2016. Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences 371: 20150333 10.1098/rstb.2015.0333 PubMed DOI PMC

Langor DW. 2019. The diversity of terrestrial arthropods in Canada. ZooKeys 819: 9–40. PubMed PMC

Schmidt S, Schmidt-Egger C, Moriniere J, Haszprunar G, Hebert PDN. 2015. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera: Apoidea partim). Molecular Ecology Resources 15: 985–1000. 10.1111/1755-0998.12363 PubMed DOI

Hendrich L, Moriniere J, Haszprunar G, Hebert PDN, Hausmann A, Kohler F et al. 2015. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species in BOLD. Molecular Ecology Resources 15: 795–818. 10.1111/1755-0998.12354 PubMed DOI

Hausmann A, Godfray HCJ, Huemer P, Mutanen M, Rougerie R, van Nieukerken EJ et al. 2013. Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN) system. PLoS ONE 8: e84518 10.1371/journal.pone.0084518 PubMed DOI PMC

Pentinsaari M, Hebert PDN, Mutanen M. 2014. Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE 9, e108651 10.1371/journal.pone.0108651 PubMed DOI PMC

Kjærandsen J. 2017. Building the DNA barcode library of Holarctic Mycetophilidae. Genome 60: 74 10.1139/gen-2015-0179 PubMed DOI

Jaschhof M. 2017. A taxonomic review of Palaearctic Peromyia Kieffer (Diptera: Cecidomyiidae, Micromyinae), with descriptions of thirty-eight new species mostly from Sweden. Studia dipterologica 23: 51–116.

Stigenberg J, Ronquist F. 2011. Revision of the Western Palearctic Meteorini (Hymenoptera, Braconidae), with a molecular characterization of hidden Fennoscandian species diversity. Zootaxa 3084: 1–95.

Marquina D, Esparza-Salas R, Roslin T, Ronquist F. 2019. Establishing arthropod community composition using metabarcoding: surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Molecular Ecology Resources 19: 1516–1530. 10.1111/1755-0998.13071 PubMed DOI PMC

Morinière J, Cancian de Araujo B, Lam AW, Hausmann A, Balke M, Schmidt S et al. 2016. Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLOS ONE 11: e0155497 10.1371/journal.pone.0155497 PubMed DOI PMC

Meier R, Wong W, Srivathsan A, Foo M. 2016. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics 32: 100–110. PubMed

Srivathsan A, Baloğlu B, Wang W, Tan WX, Bertrand D, Ng AHQ, Boey EJH, Koh JJY, Nagarajan N, Meier R. 2018. A MinIONTM-based pipeline for fast and cost-effective DNA barcoding. Molecular Ecology Resources 18: 1035–49. PubMed

Hebert PDN, Braukmann TWA, Prosser SWJ, Ratnasingham S, deWaard JR, Ivanova NV et al. 2018. A sequel to Sanger: amplicon sequencing that scales. BMC Genomics 19: 219 10.1186/s12864-018-4611-3 PubMed DOI PMC

Wang WY, Srivathsan A, Foo M, Yamane SK, Meier R. 2018. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: validating a reverse workflow for specimen processing. Molecular Ecology Resources 18: 490–501. 10.1111/1755-0998.12751 PubMed DOI

Srivathsan A, Hartop E, Puniamoorthy J, Lee WT, Kutty SN, Kurina O, Meier R. 2019. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biology 17: 96 10.1186/s12915-019-0706-9 PubMed DOI PMC

Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F. 2017. Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7: 1–14. 10.1038/s41598-016-0028-x PubMed DOI PMC

Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12: e0185809 10.1371/journal.pone.0185809 PubMed DOI PMC

Lister BC, Garcia A. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the USA 115: E10397–E10406. 10.1073/pnas.1722477115 PubMed DOI PMC

Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D et al. 2019. Arthropod decline in grasslands and forest is associated with landscape-level drivers. Nature 574: 671–674. 10.1038/s41586-019-1684-3 PubMed DOI

Willig MR, Woolbright L, Presley SJ, Schowalter TD, Waide RB, Heartsill Scalley T, Zimmerman JK, González G, Lugo AE. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest. Proceedings of the National Academy of Sciences of the USA 116: 12143–12144. 10.1073/pnas.1820456116 PubMed DOI PMC

Lister B, Garcia A. 2019. Reply to Willig et al.: Long-term population trends in the Luquillo rainforest. Proceedings of the National Academy of Sciences of the USA 116: 12145–12146. 10.1073/pnas.1904582116 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...