Fluorescent Capillary Electrophoresis Is Superior to Culture in Detecting Candida Species from Samples of Urinary Catheters and Ureteral Stents with Mono- or Polyfungal Biofilm Growth
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30674577
PubMed Central
PMC6440762
DOI
10.1128/jcm.01861-18
PII: JCM.01861-18
Knihovny.cz E-zdroje
- Klíčová slova
- Candida, biofilms, capillary electrophoresis, fungi, panfungal PCR, polyfungal sample, ureteral stents, urinary catheters,
- MeSH
- biofilmy růst a vývoj MeSH
- Candida albicans izolace a purifikace MeSH
- Candida parapsilosis izolace a purifikace MeSH
- Candida tropicalis izolace a purifikace MeSH
- Candida klasifikace izolace a purifikace MeSH
- diagnostické techniky molekulární přístrojové vybavení metody MeSH
- DNA fungální genetika MeSH
- elektroforéza kapilární metody MeSH
- fluorescence MeSH
- kandidóza mikrobiologie moč MeSH
- lidé MeSH
- močové katétry mikrobiologie MeSH
- počet mikrobiálních kolonií normy MeSH
- ribozomální DNA genetika MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- stenty mikrobiologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- ribozomální DNA MeSH
Molecular techniques in fungal detection and identification represent an efficient complementary diagnostic tool which is increasingly used to overcome limitations of routinely used culture techniques. The aim of this study was to characterize Candida sp. representation in samples from urine, urinary catheter, and ureteral stent biofilm using ITS2 ribosomal DNA (rDNA) amplification followed by fluorescent capillary electrophoresis (f-ITS2-PCR-CE) and to compare the results with those obtained by culture. A total of 419 samples were analyzed, and 106 (25.2%) were found positive, out of which 17 (16%) were polyfungal. The positivity rate did not differ between samples from catheters and stents (23.6% versus 20.9%) or between catheter and stent corresponding urine samples (40.2% versus 30.2%). Ten different Candida species were detected, with Candida parapsilosis (31.4%), Candida albicans (26.5%), and Candida tropicalis (12.4%) predominating. f-ITS2-PCR-CE was evaluated as substantially less time-consuming and 8.3 times more sensitive than the routinely applied culture technique with 1 µl of urine/sonicated fluid inoculated, detecting 67 (19.9%) versus 8 (2.4%) positive samples out of 337 initially analyzed samples. The culture sensitivity considerably improved to 1.7 times lower than that of f-ITS2-PCR-CE after the inoculation volume was increased to 100 µl in the additional 82 samples. Moreover, the molecular technique, unlike routine cultivation, enabled precise pathogen composition determination in polymicrobial samples. In conclusion, the f-ITS2-PCR-CE method was shown to be a quick and efficient tool for culture-independent detection and identification of fungi in urinary tract-related samples, demonstrating a higher sensitivity than culture.
Zobrazit více v PubMed
Lojanapiwat B. 2006. Colonization of internal ureteral stent and bacteriuria. World J Urol 24:681–683. doi:10.1007/s00345-006-0135-6. PubMed DOI
Fanning S, Mitchell AP. 2012. Fungal biofilms. PLoS Pathog 8:e1002585. doi:10.1371/journal.ppat.1002585. PubMed DOI PMC
Fisher JF, Sobel JD, Kauffman CA, Newman CA. 2011. Candida urinary tract infections—treatment. Clin Infect Dis 52:S457–S466. doi:10.1093/cid/cir112. PubMed DOI
Sobel JD, Fisher JF, Kauffman CA, Newman CA. 2011. Candida urinary tract infections—epidemiology. Clin Infect Dis 52:S433–S436. doi:10.1093/cid/cir109. PubMed DOI
Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE. 2010. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–663. doi:10.1086/650482. PubMed DOI
Idelevich EA, Grunewald CM, Wüllenweber J, Becker K. 2014. Rapid identification and susceptibility testing of Candida spp. from positive blood cultures by combination of direct MALDI-TOF mass spectrometry and direct inoculation of Vitek 2. PLoS One 9:e114834. doi:10.1371/journal.pone.0114834. PubMed DOI PMC
Anderson IC, Cairney JWG. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. doi:10.1111/j.1462-2920.2004.00675.x. PubMed DOI
Obručová H, Tihelková R, Kotásková I, Růžička F, Holá V, Němcová E, Freiberger T. 2016. Evaluation of fluorescent capillary electrophoresis for rapid identification of Candida fungal infections. J Clin Microbiol 54:1295–1303. doi:10.1128/JCM.00118-16. PubMed DOI PMC
Liu CY, Zhang J, Xu X, Chen J. 2011. Prediction of DNA separation by capillary electrophoresis with polymer additives. J Chromatogr Sci 49:310–315. doi:10.1093/chrsci/49.4.310. PubMed DOI
Xu Y, Moser C, Al-Soud WA, Sørensen S, Høiby N, Nielsen PH, Thomsen TR. 2012. Culture-Dependent and -Independent Investigations of Microbial Diversity on Urinary Catheters. J Clin Microbiol 50:3901–3908. doi:10.1128/JCM.01237-12. PubMed DOI PMC
Holá V, Ruzicka F, Horka M. 2010. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol Med Microbiol 59:525–528. doi:10.1111/j.1574-695X.2010.00703.x. PubMed DOI
Nemcova E, Cernochova M, Ruzicka F, Malisova B, Freiberger T, Nemec P. 2015. Rapid identification of medically important Candida isolates using high resolution melting analysis. PLoS One 10:e0116940. doi:10.1371/journal.pone.0116940. PubMed DOI PMC
Maki DG, Tambyah PA. 2001. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 7:342–347. doi:10.3201/eid0702.700342. PubMed DOI PMC
Riedl CR, Plas E, Hübner WA, Zimmerl H, Ulrich W, Pflüger H. 1999. Bacterial colonization of ureteral stents. Eur Urol 36:53–59. doi:10.1159/000019927. PubMed DOI
Lifshitz DA, Winkler HZ, Gross M, Sulkes J, Baniel J, Livne PM. 1999. Predictive value of urinary cultures in assessment of microbial colonization of ureteral stents. J Endourol 13:735–738. doi:10.1089/end.1999.13.735. PubMed DOI
Zhai Z, Li H, Qin A, Liu G, Liu X, Wu C, Li H, Zhu Z, Qu X, Dai K. 2014. Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty. J Clin Microbiol 52:1730–1736. doi:10.1128/JCM.03138-13. PubMed DOI PMC
Barnes RA. 2008. Early diagnosis of fungal infection in immunocompromised patients. J Antimicrob Chemother 61:i3–i6. doi:10.1093/jac/dkm424. PubMed DOI
Kauffman CA, Vazquez JA, Sobel JD, Gallis HA, McKinsey DS, Karchmer AW, Sugar AM, Sharkey PK, Wise GJ, Mangi R, Mosher A, Lee JY, Dismukes WE. 2000. Prospective Multicenter Surveillance Study of Funguria in Hospitalized Patients. The National Institute for Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis 30:14–18. doi:10.1086/313583. PubMed DOI
Dariane C, Cornu JN, Esteve E, Cordel H, Egrot C, Traxer O, Haab F. 2015. Infections fongiques et matériel urétéral: quelle prise en charge? Prog Urol 25:306–311. doi:10.1016/j.purol.2015.01.015. PubMed DOI
Weinstein RA, Lundstrom T, Sobel J. 2001. Nosocomial candiduria: a review. Clin Infect Dis 32:1602–1607. doi:10.1086/320531. PubMed DOI
Sobel JD, Vazquez JA. 1999. Fungal infections of the urinary tract. World J Urol 17:410–414. doi:10.1007/s003450050167. PubMed DOI
Padawer D, Pastukh N, Nitzan O, Labay K, Aharon I, Brodsky D, Glyatman T, Peretz A. 2015. Catheter-associated candiduria: risk factors, medical interventions, and antifungal susceptibility. Am J Infect Control 43:e19–e22. doi:10.1016/j.ajic.2015.03.013. PubMed DOI
Berkow EL, Lockhart SR. 2017. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 10:237–245. doi:10.2147/IDR.S118892. PubMed DOI PMC
Perea S, Patterson TF, Patterson TF. 2002. Antifungal resistance in pathogenic fungi. Clin Infect Dis 35:1073–1080. doi:10.1086/344058. PubMed DOI
Mandras N, Tullio V, Allizond V, Scalas D, Banche G, Roana J, Robbiano F, Fucale G, Malabaila A, Cuffini AM, Carlone N. 2009. In vitro activities of fluconazole and voriconazole against clinical isolates of Candida spp. determined by disk diffusion testing in Turin, Italy. Antimicrob Agents Chemother 53:1657–1659. doi:10.1128/AAC.00998-08. PubMed DOI PMC
Perlin DS. 2015. Echinocandin resistance in Candida. Clin Infect Dis 61:S612–S617. doi:10.1093/cid/civ791. PubMed DOI PMC
Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW. 2002. Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248. doi:10.1128/JCM.40.4.1244-1248.2002. PubMed DOI PMC
Wolcott R, Costerton JW, Raoult D, Cutler SJ. 2013. The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19:107–112. doi:10.1111/j.1469-0691.2012.04001.x. PubMed DOI
Rossoni RD, Barbosa JO, Vilela SFG, dos Santos JD, de Barros PP, Prata MC, de A, Anbinder AL, Fuchs BB, Jorge AOC, Mylonakis E, Junqueira JC. 2015. Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PLoS One 10:e0131700. doi:10.1371/journal.pone.0131700. PubMed DOI PMC
Santos JD. d, Piva E, Vilela SFG, Jorge AOC, Junqueira JC. 2016. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions. Braz Oral Res 30:S1806-83242016000100232. doi:10.1590/1807-3107BOR-2016.vol30.0023. PubMed DOI