A Strip Biosensor with Guinea Green B and Fuchsin Basic Color Indicators on a Glass Nanofiber Carrier for the Cholinesterase Detection of Nerve Agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31867489
PubMed Central
PMC6921250
DOI
10.1021/acsomega.9b02153
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This paper deals with the innovation of the Czech colorimetric biosensor Detehit designed for the simple, fast, and sensitive detection of nerve agents. The innovation is based on the use of an indicator consisting of a mixture of two triphenylmethane dyes, Guinea green B and a basic fuchsin, on a glass nanofiber filter paper carrier. The advantage of this solution is the blue-red color transition, which is much more visible than the white-yellow transition of other Detehit biosensors. The newly designed biosensor allows the users to visually detect (with the naked eye) the presence of the most significant paralytic substances (sarin, soman, cyclosarin, tabun, VX) in water at concentrations of at least 0.001 μg/mL. This biosensor design also enables one to detect these substances in air or on contaminated surfaces.
Zobrazit více v PubMed
Costanzi S.; Machado J.-H.; Mitchell M. Nerve agents: what they are, how they work, how to counter them. ACS Chem. Neurosci. 2018, 9, 873–885. 10.1021/acschemneuro.8b00148. PubMed DOI
Army, Marine Corps, Navy, Air Force, USA . Potential Military Chemical/Biological Agents and Compounds. 2005. Available online: https://fas.org/irp/doddir/army/fm3-11-9.pdf (accessed July 20, 2019).
Franke S.Lehrbuch der Militárchemie, Band 1; Militärverlag der Deutschen Demokratischen Republik: Berlin, 1977.
Pita R.; Domingo J. The use of chemical weapons in the Syrian conflict. Toxics 2014, 2, 391–402. 10.3390/toxics2030391. DOI
Nepovimova E.; Kuca K. Chemical warfare agent NOVICHOK-mini-review of available data. Food Chem. Toxicol. 2018, 121, 343–350. 10.1016/j.fct.2018.09.015. PubMed DOI
Sun Y.; Ong K. Y.. Detection Technologies for Chemical Warfare Agents and Toxic Vapors; 1st edition, CRC press: Boca Raton (Florida) USA, 2004. ISBN: 9781566706681.
Chen L.; Wu D.; Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 2017, 3, 27–43. 10.1021/acssensors.7b00816. PubMed DOI
Halámek E.; Kobliha Z.; Pitschmann V.. Analýza bojových chemických látek (Analysis of Chemical Warfare Agents), in Czech; Vydavatelství Univerzity obrany: Brno, Czech Republic, 2009. ISBN 978-80-7231-258-0.
Ellman G. L.; Courtney K. D.; Andres V. Jr.; Featherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. 10.1016/0006-2952(61)90145-9. PubMed DOI
Vymazalová K.; Kadlčák J.; Halámek E. Photocolorimetric biosensor for detection of cholinergic organophosphorus compounds. Def. Sci. J. 2012, 62, 399–403. 10.14429/dsj.62.2589. DOI
Bissbort S. H.; Vermaak W. J. H.; Elias J.; Bester M. J.; Dhatt G. S.; Pum J. K. W. Novel test and its automation for the determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chim. Acta 2001, 303, 139–145. 10.1016/S0009-8981(00)00388-0. PubMed DOI
Pitschmann V.; Matějovský L.; Vetchý D.; Kobliha Z. Enzymatic determination of anticholinesterases using a composite carrier. Anal. Lett. 2016, 49, 2418–2426. 10.1080/00032719.2016.1151889. DOI
Pitschmann V.; Matějovský L.; Lobotka M.; Dědič J.; Urban M.; Dymák M. Modified Biosensor for Cholinesterase Inhibitors with Guinea Green B as the Color Indicator. Biosensors 2018, 8, 81.10.3390/bios8030081. PubMed DOI PMC
Barendsz A. W. A detection tube for cholinesterase inhibiting compounds. Int. J. Environ. Anal. Chem. 1979, 6, 89–94. 10.1080/03067317908071163. PubMed DOI
Pohanka M.; Hrabinova M.; Kuca K.; Simonato J.-P. Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman’s Method. Int. J. Mol. Sci. 2011, 12, 2631–2640. 10.3390/ijms12042631. PubMed DOI PMC
Tušarová I.; Halámek E.. Biosenzor pro detekci a rozlišení inhibitorů cholinesteráz, způsob přípravy zóny biosenzoru s imobilizovanou cholinesterázou, způsob detekce inhibitorů cholinesteráz a způsob rozlišení inhibitorů cholinesteráz (Biosensor for the detection and differentiation of cholinesterase inhibitors, method of preparation of biosensor zone with immobilised cholinesterase, method of detection of cholinesterase inhibitors and method of differentiation of cholinesterase inhibitors). CZ Patent 288576, 2001.
Matějovský L.; Pitschmann V. New carrier made from glass nanofibres for the colorimetric biosensor of cholinesterase inhibitors. Biosensors 2018, 8, 51.10.3390/bios8020051. PubMed DOI PMC
Pitschmann V.; Matejovský L.; Dymák M.; Dropa T.; Urban M.; Vošahlíková I. Cholinesterase inhibitor biosensors. Ecol. Saf. 2017, 11, 18–23.
Pitschmann V.; Matějovský L.; Vetchý D.; Staš M. Biochemical Detection of Cholinesterase Inhibitors in Water with a New Two-Component Chromogenic Reagent. J. Anal. Chem. 2018, 73, 900–905. 10.1134/S1061934818090101. DOI
Jurik F.; Rae I. D.; Kauffman G. B. Emil Votocek (1872-1950): A Tribute to the Chemist-Composer-Lexicographer. J. Chem. Educ. 1999, 76, 511.10.1021/ed076p511. DOI
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011, 155, 219–223. 10.5507/bp.2011.036. PubMed DOI
NATO standard Requirements for Water Potability during Field Operations and in Emergency Situations, March 2013. Available online: https://www.sdu.dk/-/media/files/om_sdu/institutter/iti/forskning/nato+arw/literature/amedp-4-.PDF (accessed May 15, 2019).
Council N. R.Acute Exposure Guideline Levels for Selected Airborne Chemicals; National Academies Press: Washington, USA, Vol. 3; 2003. ISBN: 978–0–309-08883-1.