Modified Biosensor for Cholinesterase Inhibitors with Guinea Green B as the Color Indicator

. 2018 Sep 04 ; 8 (3) : . [epub] 20180904

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30181477

Grantová podpora
VI20152018024 Ministerstvo Vnitra České Republiky

Colorimetric biosensors of cholinesterase inhibitors are ideal for fast, reliable, and very simple detection of agents in air, in water, and on surfaces. This paper describes an innovation of the Czech Detehit biosensor, which is based on a biochemical enzymatic reaction visualized by using Ellman's reagent as a chromogenic indicator. The modification basically consists of a much more distinct color response of the biosensor, attained through optimization of the reaction system by using Guinea Green B as the indicator. The performance of the modified biosensor was verified on the chemical warfare agents (sarin, soman, cyclosarin, and VX) in water. The detection limits ascertained visually (with the naked eye) were about 0.001 µg/mL in water (exposure time 60 s, inhibition efficiency 25%).

Zobrazit více v PubMed

Romano J.A., Lukey B.J., Salem H. Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics. CRC Press; Boca Raton, FL, USA: 2007.

Mesilaakso M. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods. John Wiley & Sons; Chichester, UK: 2005.

Royo S., Martínez-Máñez R., Sancenón F., Costero A.M., Parra M., Gil S. Chromogenic and fluorogenic reagents for chemical warfare agents detection. Chem. Commun. 2007:4839–4847. doi: 10.1039/b707063b. PubMed DOI

Halámek E., Kobliha Z., Pitschmann V. Analysis of Chemical Warfare Agents. University of Defence; Brno, Czech Republic: 2009.

Simonian A.L., Good T.A., Wang S.S., Wild J.R. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta. 2005;534:69–77. doi: 10.1016/j.aca.2004.06.056. DOI

Miao Y., He N., Zhu J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010;110:5216–5234. doi: 10.1021/cr900214c. PubMed DOI

Pohanka M., Vlček V., Žďárová-Karasová J., Kuča K., Cabal J., Fusek J. Acetylcholinesterase based colorimetric dipsticks for military performance: Principles and construction. Adv. Mil. Technol. 2012;7:83–91.

Li Y., Hou C., Lei J., Deng B., Huang J., Yang M. Detection of organophosphorus pesticides with colorimetry and computer image analysis. Anal. Sci. 2016;32:719–724. doi: 10.2116/analsci.32.719. PubMed DOI

Ellman G.L., Courtney D.K., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Vymazalová K., Halámek E., Kadlčák J. Photocolorimetric biosensor for detection of cholinergic organophosphorus compounds. Def. Sci. J. 2012;82:399–403. doi: 10.14429/dsj.62.2589. DOI

Hoskovcová M., Dubina P., Halámek E., Kobliha Z. Analysis of nerve agents through a modified method of cholinesterase assessment using artificial neuronal networks. Mil. Med. Sci. Lett. 2017;86:96–103. doi: 10.31482/mmsl.2017.017. DOI

Bissbort S.H., Vermaak W.J.H., Elias J., Bester M.J., Dhatt G.S., Pum J.K.W. Novel test and its automation for determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chem. Acta. 2001;303:139–145. doi: 10.1016/S0009-8981(00)00388-0. PubMed DOI

Pitschmann V., Matějovský L., Vetchý D., Kobliha Z. Enzymatic determination of anticholinesterases using a composite carrier. Anal. Lett. 2016;49:2418–2426. doi: 10.1080/00032719.2016.1151889. DOI

Halámek E., Kobliha Z., Orel J., Tušarová I. Souprava Indikačních Prostředků Pro Automatický Signalizátor GSA-11. C.Z. Utility Model 7004. Jan 23, 1998.

Halámek E., Kobliha Z., Orel J., Tušarová I. Souprava Indikačních Prostředků Pro Automatický Signalizátor GSA-12. C.Z. Utility Model 7006. Jan 23, 1998.

Barendsz A.W. A detection tube for cholinesterase inhibing compounds. Int. J. Environ. Anal. Chem. 1979;6:89–94. doi: 10.1080/03067317908071163. PubMed DOI

Gelman C., Kramer D.N. Enzymatic Method for Detection of Anticholinesterases. 3,049,411. U.S. Patent. 1962 Aug 14;

Tušarová I., Halámek E. Biosenzor pro Detekci a Rozlišení Inhibitorů Cholinesteráz, Způsob Přípravy zóny Biosenzoru s Imobilizovanou Cholinesterázou, Způsob Detekce Inhibitorů Cholinesteráz a Způsob Rozlišení Inhibitorů Cholinesteráz. 288,576. C.Z. Patent. 2001 May 22;

Matějovský L., Pitschmann V. New carrier made from glass nanofibres for the colorimetric biosensor of cholinesterase inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC

Pitschmann V., Matějovský L., Dymák M., Dropa T., Urban M., Vošahlíková I. Cholinesterase inhibitor biosensor. Ecol. Saf. 2017;11:18–23.

Zolotov Y.A., Ivanov V.M., Amelin V.G. Chemical Test Methods of Analysis. Elsevier Science; Amsterdam, The Netherlands: 2002.

US Army. US Navy. USA Force . Potential Military Chemical/Biological Agents and Compounds. Exidyne; Weantzeville, MO, USA: 2005. Field Manual FM 3-11.9.

NATO Standard AMedP-4.9 . Requirements for Water Potability during Field Operations and in Emergency Situations. NATO Standardization Agency; Brussels, Belgium: 2013. Version 1.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...