Modified Biosensor for Cholinesterase Inhibitors with Guinea Green B as the Color Indicator
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VI20152018024
Ministerstvo Vnitra České Republiky
PubMed
30181477
PubMed Central
PMC6164029
DOI
10.3390/bios8030081
PII: bios8030081
Knihovny.cz E-zdroje
- Klíčová slova
- Guinea Green B, biosensor of cholinesterase inhibitors, chemical warfare agents, enzymatic reaction, visual evaluation,
- MeSH
- biosenzitivní techniky metody MeSH
- chemické bojové látky analýza MeSH
- cholinesterasové inhibitory analýza MeSH
- kolorimetrie metody MeSH
- lissaminová zelená barviva chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické bojové látky MeSH
- cholinesterasové inhibitory MeSH
- guinea green B MeSH Prohlížeč
- lissaminová zelená barviva MeSH
Colorimetric biosensors of cholinesterase inhibitors are ideal for fast, reliable, and very simple detection of agents in air, in water, and on surfaces. This paper describes an innovation of the Czech Detehit biosensor, which is based on a biochemical enzymatic reaction visualized by using Ellman's reagent as a chromogenic indicator. The modification basically consists of a much more distinct color response of the biosensor, attained through optimization of the reaction system by using Guinea Green B as the indicator. The performance of the modified biosensor was verified on the chemical warfare agents (sarin, soman, cyclosarin, and VX) in water. The detection limits ascertained visually (with the naked eye) were about 0.001 µg/mL in water (exposure time 60 s, inhibition efficiency 25%).
Zobrazit více v PubMed
Romano J.A., Lukey B.J., Salem H. Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics. CRC Press; Boca Raton, FL, USA: 2007.
Mesilaakso M. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods. John Wiley & Sons; Chichester, UK: 2005.
Royo S., Martínez-Máñez R., Sancenón F., Costero A.M., Parra M., Gil S. Chromogenic and fluorogenic reagents for chemical warfare agents detection. Chem. Commun. 2007:4839–4847. doi: 10.1039/b707063b. PubMed DOI
Halámek E., Kobliha Z., Pitschmann V. Analysis of Chemical Warfare Agents. University of Defence; Brno, Czech Republic: 2009.
Simonian A.L., Good T.A., Wang S.S., Wild J.R. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta. 2005;534:69–77. doi: 10.1016/j.aca.2004.06.056. DOI
Miao Y., He N., Zhu J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010;110:5216–5234. doi: 10.1021/cr900214c. PubMed DOI
Pohanka M., Vlček V., Žďárová-Karasová J., Kuča K., Cabal J., Fusek J. Acetylcholinesterase based colorimetric dipsticks for military performance: Principles and construction. Adv. Mil. Technol. 2012;7:83–91.
Li Y., Hou C., Lei J., Deng B., Huang J., Yang M. Detection of organophosphorus pesticides with colorimetry and computer image analysis. Anal. Sci. 2016;32:719–724. doi: 10.2116/analsci.32.719. PubMed DOI
Ellman G.L., Courtney D.K., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Vymazalová K., Halámek E., Kadlčák J. Photocolorimetric biosensor for detection of cholinergic organophosphorus compounds. Def. Sci. J. 2012;82:399–403. doi: 10.14429/dsj.62.2589. DOI
Hoskovcová M., Dubina P., Halámek E., Kobliha Z. Analysis of nerve agents through a modified method of cholinesterase assessment using artificial neuronal networks. Mil. Med. Sci. Lett. 2017;86:96–103. doi: 10.31482/mmsl.2017.017. DOI
Bissbort S.H., Vermaak W.J.H., Elias J., Bester M.J., Dhatt G.S., Pum J.K.W. Novel test and its automation for determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chem. Acta. 2001;303:139–145. doi: 10.1016/S0009-8981(00)00388-0. PubMed DOI
Pitschmann V., Matějovský L., Vetchý D., Kobliha Z. Enzymatic determination of anticholinesterases using a composite carrier. Anal. Lett. 2016;49:2418–2426. doi: 10.1080/00032719.2016.1151889. DOI
Halámek E., Kobliha Z., Orel J., Tušarová I. Souprava Indikačních Prostředků Pro Automatický Signalizátor GSA-11. C.Z. Utility Model 7004. Jan 23, 1998.
Halámek E., Kobliha Z., Orel J., Tušarová I. Souprava Indikačních Prostředků Pro Automatický Signalizátor GSA-12. C.Z. Utility Model 7006. Jan 23, 1998.
Barendsz A.W. A detection tube for cholinesterase inhibing compounds. Int. J. Environ. Anal. Chem. 1979;6:89–94. doi: 10.1080/03067317908071163. PubMed DOI
Gelman C., Kramer D.N. Enzymatic Method for Detection of Anticholinesterases. 3,049,411. U.S. Patent. 1962 Aug 14;
Tušarová I., Halámek E. Biosenzor pro Detekci a Rozlišení Inhibitorů Cholinesteráz, Způsob Přípravy zóny Biosenzoru s Imobilizovanou Cholinesterázou, Způsob Detekce Inhibitorů Cholinesteráz a Způsob Rozlišení Inhibitorů Cholinesteráz. 288,576. C.Z. Patent. 2001 May 22;
Matějovský L., Pitschmann V. New carrier made from glass nanofibres for the colorimetric biosensor of cholinesterase inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC
Pitschmann V., Matějovský L., Dymák M., Dropa T., Urban M., Vošahlíková I. Cholinesterase inhibitor biosensor. Ecol. Saf. 2017;11:18–23.
Zolotov Y.A., Ivanov V.M., Amelin V.G. Chemical Test Methods of Analysis. Elsevier Science; Amsterdam, The Netherlands: 2002.
US Army. US Navy. USA Force . Potential Military Chemical/Biological Agents and Compounds. Exidyne; Weantzeville, MO, USA: 2005. Field Manual FM 3-11.9.
NATO Standard AMedP-4.9 . Requirements for Water Potability during Field Operations and in Emergency Situations. NATO Standardization Agency; Brussels, Belgium: 2013. Version 1.