Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SV/FVZ202103
Ministry of Education Youth and Sports
PubMed
37366964
PubMed Central
PMC10296098
DOI
10.3390/bios13060599
PII: bios13060599
Knihovny.cz E-resources
- Keywords
- affordable, cholinesterase, field-analysis, open-source, pesticide, photometry, point-of-care test,
- MeSH
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Cholinesterases MeSH
- Carbofuran * MeSH
- Humans MeSH
- Pesticides * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Cholinesterases MeSH
- Carbofuran * MeSH
- Pesticides * MeSH
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
See more in PubMed
Pundir C.S., Malik A., Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019;140:111348. doi: 10.1016/j.bios.2019.111348. PubMed DOI
Jain U., Saxena K., Hooda V., Balayan S., Singh A.P., Tikadar M., Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors—An update. Food Chem. 2022;371:131126. doi: 10.1016/j.foodchem.2021.131126. PubMed DOI
Liu D.M., Xu B.J., Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trac. Trend. Anal. Chem. 2021;142:116320. doi: 10.1016/j.trac.2021.116320. DOI
Pope C.N., Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018;153:205–216. doi: 10.1016/j.bcp.2018.01.044. PubMed DOI PMC
Choi R.J., Roy A., Jung H.J., Ali M.Y., Min B.-S., Park C.H., Yokozawa T., Fan T.-P., Choi J.S., Jung H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol. 2016;190:219–230. doi: 10.1016/j.jep.2016.06.013. PubMed DOI
Goud K.Y., Teymourian H., Sandhu S.S., Tostado N., Mishra R.K., Moore L.C., Harvey S.P., Wang J. OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sens. Actuators B Chem. 2020;320:128344. doi: 10.1016/j.snb.2020.128344. DOI
Pundir C.S., Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012;429:19–31. doi: 10.1016/j.ab.2012.06.025. PubMed DOI
Cao J., Wang M., Yu H., She Y., Cao Z., Ye J., Abd El-Aty A.M., Hacimuftuoglu A., Wang J., Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020;68:7298–7315. doi: 10.1021/acs.jafc.0c01962. PubMed DOI
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI
Sarkar B., Alam S., Rajib T.K., Islam S.S., Araf Y., Ullah M.A. Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: A computational approach. Egypt. J. Med. Hum. Genet. 2021;22:10. doi: 10.1186/s43042-020-00127-8. DOI
Kitowski I., Łopucki R., Stachniuk A., Fornal E. A pesticide banned in the European Union over a decade ago is still present in raptors in Poland. Environ. Conserv. 2020;47:310–314. doi: 10.1017/S037689292000034X. DOI
Ruiz-Suarez N., Boada L.D., Henriquez-Hernandez L.A., Gonzalez-Moreo F., Suarez-Perez A., Camacho M., Zumbado M., Almeida-Gonzalez M., Del Mar Travieso-Aja M., Luzardo O.P. Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain) Sci. Total Environ. 2015;505:1093–1099. doi: 10.1016/j.scitotenv.2014.10.093. PubMed DOI
de Siqueira A., Salvagni F.A., Yoshida A.S., Goncalves-Junior V., Calefi A.S., Fukushima A.R., Spinosa Hde S., Maiorka P.C. Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran. Res. Vet. Sci. 2015;102:142–149. doi: 10.1016/j.rvsc.2015.08.006. PubMed DOI
Zeljezic D., Vrdoljak A.L., Radic B., Fuchs N., Berend S., Orescanin V., Kopjar N. Comparative evaluation of acetylcholinesterase status and genome damage in blood cells of industrial workers exposed to carbofuran. Food Chem. Toxicol. 2007;45:2488–2498. doi: 10.1016/j.fct.2007.05.025. PubMed DOI
Di Nonno S., Ulber R. Portuino—A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter. Sensors. 2022;22:7916. doi: 10.3390/s22207916. PubMed DOI PMC
Anzalone G.C., Glover A.G., Pearce J.M. Open-source colorimeter. Sensors. 2013;13:5338–5346. doi: 10.3390/s130405338. PubMed DOI PMC
Hoang L.Q., Chi H.B.L., Khanh D.N.N., Vy N.T.T., Hanh P.X., Vu T.N., Lam H.T., Phuong N.T.K. Development of a low-cost colorimeter and its application for determination of environmental pollutants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;249:119212. doi: 10.1016/j.saa.2020.119212. PubMed DOI
Machado M.C., Vimbela G.V., Tripathi A. Creation of a low cost, low light bioluminescence sensor for real time biological nitrate sensing in marine environments. Environ. Technol. 2022;43:4002–4009. doi: 10.1080/09593330.2021.1939792. PubMed DOI
Kurata K. Open-source colorimeter assembled from laser-cut plates and plug-in circuits. Hardwarex. 2021;9:e00161. doi: 10.1016/j.ohx.2020.e00161. PubMed DOI PMC
Fu Q., Wu Z., Xu F., Li X., Yao C., Xu M., Sheng L., Yu S., Tang Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16:1927–1933. doi: 10.1039/C6LC00083E. PubMed DOI
Arafat Hossain M., Canning J., Ast S., Cook K., Rutledge P.J., Jamalipour A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt. Lett. 2015;40:1737–1740. doi: 10.1364/OL.40.001737. PubMed DOI
Bergua J.F., Alvarez-Diduk R., Idili A., Parolo C., Maymo M., Hu L., Merkoci A. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem. 2022;94:1271–1285. doi: 10.1021/acs.analchem.1c04491. PubMed DOI
Jeong H., Shin S., Hwang J., Kim Y.-J., Choi S. Open-Source Fluorescence Spectrometer for Noncontact Scientific Research and Education. J. Chem. Educ. 2021;98:3493–3501. doi: 10.1021/acs.jchemed.1c00560. DOI
Arduini F., Cinti S., Caratelli V., Amendola L., Palleschi G., Moscone D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019;126:346–354. doi: 10.1016/j.bios.2018.10.014. PubMed DOI
Caratelli V., Fegatelli G., Moscone D., Arduini F. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosens. Bioelectron. 2022;205:114119. doi: 10.1016/j.bios.2022.114119. PubMed DOI
Bilal S., Sami A.J., Hayat A., Fayyaz Ur Rehman M. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemistry. 2022;144:107999. doi: 10.1016/j.bioelechem.2021.107999. PubMed DOI
Ding J., Li B., Chen L., Qin W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew. Chem. Int. Ed. Engl. 2016;55:13033–13037. doi: 10.1002/anie.201606268. PubMed DOI
Mishra R.K., Hubble L.J., Martin A., Kumar R., Barfidokht A., Kim J., Musameh M.M., Kyratzis I.L., Wang J. Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sens. 2017;2:553–561. doi: 10.1021/acssensors.7b00051. PubMed DOI
Thet Tun W.S., Saenchoopa A., Daduang S., Daduang J., Kulchat S., Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. Rsc. Adv. 2023;13:9603–9614. doi: 10.1039/D3RA00512G. PubMed DOI PMC
Tao H., Liu F., Ji C., Wu Y., Wang X., Shi Q. A novel electrochemical sensing platform based on the esterase extracted from kidney bean for high-sensitivity determination of organophosphorus pesticides. Rsc. Adv. 2022;12:5265–5274. doi: 10.1039/D1RA08129B. PubMed DOI PMC
Fuyal M., Giri B. A Combined System of Paper Device and Portable Spectrometer for the Detection of Pesticide Residues. Food Analytical. Methods. 2020;13:1492–1502. doi: 10.1007/s12161-020-01770-y. DOI
Bueno D., Alonso G., Muñoz R., Marty J.L. Low-cost and portable absorbance measuring system to carbamate and organophosphate pesticides. Sens. Actuators B Chem. 2014;203:81–88. doi: 10.1016/j.snb.2014.06.093. DOI
Gong C., Fan Y., Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta. 2022;240:123145. doi: 10.1016/j.talanta.2021.123145. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced Ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI
Pohanka M., Hrabinova M., Kuca K., Simonato J.P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci. 2011;12:2631–2640. doi: 10.3390/ijms12042631. PubMed DOI PMC
Keresteš O., Pohanka M. Enzymatic Biosensors for the Environmental Analysis of Pesticides. Chem. Listy. 2022;116:358–364. doi: 10.54779/chl20220358. DOI
Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI
No H.Y., Kim Y.A., Lee Y.T., Lee H.S. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides. Anal. Chim. Acta. 2007;594:37–43. doi: 10.1016/j.aca.2007.05.008. PubMed DOI
Fu Q., Zhang C., Xie J., Li Z., Qu L., Cai X., Ouyang H., Song Y., Du D., Lin Y., et al. Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone. Anal. Chim. Acta. 2019;1092:126–131. doi: 10.1016/j.aca.2019.09.059. PubMed DOI
Pitschmann V., Matějovský L., Lunerová K., Dymák M., Urban M., Králík L. Detection Papers with Chromogenic Chemosensors for Direct Visual Detection and Distinction of Liquid Chemical Warfare Agents. Chemosensors. 2019;7:30. doi: 10.3390/chemosensors7030030. DOI
Pidany F., Kroustkova J., Al Mamun A., Suchankova D., Brazzolotto X., Nachon F., Chantegreil F., Dolezal R., Pulkrabkova L., Muckova L., et al. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids—Design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2023;252:115301. doi: 10.1016/j.ejmech.2023.115301. PubMed DOI
BCSengage Arduino Starter Kit Base Replacement. [(accessed on 30 April 2023)]. Available online: https://www.thingiverse.com/thing:1286765.
TAOS TSL230R Datasheet. [(accessed on 30 April 2023)]. Available online: https://pdf1.alldatasheet.com/datasheet-pdf/view/153439/ETC1/TSL230R.html.
Ks0032 Keyestudio RGB LED Module. [(accessed on 18 April 2023)]. Available online: https://wiki.keyestudio.com/Ks0032_keyestudio_RGB_LED_Module.
Meyer A. High Sensitivity Light Sensor TSL230R + Arduino. [(accessed on 30 April 2023)]. Available online: http://adam-meyer.com/arduino/TSL230R.
Kerestes O., Pohanka M. Open Source Portable Photodetection Platform (OS3P) [(accessed on 30 April 2023)]. Available online: DOI
Carreres-Prieto D., García J.T., Cerdán-Cartagena F., Suardiaz-Muro J. Performing Calibration of Transmittance by Single RGB-LED within the Visible Spectrum. Sensors. 2020;20:3492. doi: 10.3390/s20123492. PubMed DOI PMC
Kostelnik A., Kopel P., Cegan A., Pohanka M. Construction of an Acetylcholinesterase Sensor Based on Synthesized Paramagnetic Nanoparticles, a Simple Tool for Neurotoxic Compounds Assay. Sensors. 2017;17:676. doi: 10.3390/s17040676. PubMed DOI PMC
Wei J.C., Wei B., Yang W., He C.W., Su H.X., Wan J.B., Li P., Wang Y.T. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food Chem. Toxicol. 2018;119:430–437. doi: 10.1016/j.fct.2017.12.019. PubMed DOI
Jeyapragasam T., Saraswathi R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sens. Actuators B Chem. 2014;191:681–687. doi: 10.1016/j.snb.2013.10.054. DOI
Qu Y., Sun Q., Xiao F., Shi G., Jin L. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry. 2010;77:139–144. doi: 10.1016/j.bioelechem.2009.08.001. PubMed DOI
Matejovsky L., Pitschmann V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors. 2018;8:51. doi: 10.3390/bios8020051. PubMed DOI PMC
Pohanka M., Zakova J. A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity. Sensors. 2021;21:1796. doi: 10.3390/s21051796. PubMed DOI PMC
Laganovska K., Zolotarjovs A., Vazquez M., Mc Donnell K., Liepins J., Ben-Yoav H., Karitans V., Smits K. Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. Hardwarex. 2020;7:e00108. doi: 10.1016/j.ohx.2020.e00108. PubMed DOI PMC
Alvarez J.L., Mozo J.D., Duran E. Analysis of Single Board Architectures Integrating Sensors Technologies. Sensors. 2021;21:6303. doi: 10.3390/s21186303. PubMed DOI PMC
Innok W., Hiranrat A., Chana N., Rungrotmongkol T., Kongsune P. In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment. J. Comput. Aided Mol. Des. 2021;35:325–336. doi: 10.1007/s10822-020-00372-4. PubMed DOI
Kikura-Hanajiri R., Kawamura M., Maruyama T., Kitajima M., Takayama H., Goda Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009;27:67–74. doi: 10.1007/s11419-009-0070-5. DOI
Omar F., Tareq A.M., Alqahtani A.M., Dhama K., Sayeed M.A., Emran T.B., Simal-Gandara J. Plant-Based Indole Alkaloids: A Comprehensive Overview from a Pharmacological Perspective. Molecules. 2021;26:2297. doi: 10.3390/molecules26082297. PubMed DOI PMC
Open Meter Duo: Low-Cost Instrument for Fluorimetric Determination of Cholinesterase Activity