Construction of an Acetylcholinesterase Sensor Based on Synthesized Paramagnetic Nanoparticles, a Simple Tool for Neurotoxic Compounds Assay
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28338634
PubMed Central
PMC5419789
DOI
10.3390/s17040676
PII: s17040676
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, carbofuran, electrochemistry, galantamine, magnetic particles, nanomaterial, nanoparticles, screen-printed sensor,
- MeSH
- acetylcholinesterasa MeSH
- biosenzitivní techniky MeSH
- cholinesterasové inhibitory MeSH
- enzymy imobilizované MeSH
- nanočástice * MeSH
- organofosforové sloučeniny MeSH
- pesticidy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- enzymy imobilizované MeSH
- organofosforové sloučeniny MeSH
- pesticidy MeSH
Magnetic particles (MPs) have been widely used in biological applications in recent years as a carrier for various molecules. Their big advantage is in repeated use of immobilized molecules including enzymes. Acetylcholinesterase (AChE) is an enzyme playing crucial role in neurotransmission and the enzyme is targeted by various molecules like Alzheimer's drugs, pesticides and warfare agents. In this work, an electrochemical biosensor having AChE immobilized onto MPs and stabilized through glutaraldehyde (GA) molecule was proposed for assay of the neurotoxic compounds. The prepared nanoparticles were modified by pure AChE and they were used for the measurement anti-Alzheimer's drug galantamine and carbamate pesticide carbofuran with limit of detection 1.5 µM and 20 nM, respectively. All measurements were carried out using screen-printed sensor with carbon working, silver reference, and carbon auxiliary electrode. Standard Ellman's assay was used for validation measurement of both inhibitors. Part of this work was the elimination of reversible inhibitors represented by galantamine from the active site of AChE. For this purpose, we used a lower pH to get the original activity of AChE after inhibition by galantamine. We also observed decarbamylation of the AChE-carbofuran adduct. Influence of organic solvents to AChE as well as repeatability of measurement with MPs with AChE was also established.
Zobrazit více v PubMed
Pohanka M. Cholinesterase, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–223. doi: 10.5507/bp.2011.036. PubMed DOI
Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015;69:4–16. doi: 10.2478/s11696-014-0542-x. DOI
Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Kostelnik A., Cegan A., Pohanka M. Electrochemical determination of activity of acetylcholinesterase immobilized on magnetic particles. Int. J. Electrochem. Sci. 2016;11:4840–4849. doi: 10.20964/2016.06.39. DOI
Kostelnik A., Cegan A., Pohanka M. Color change of phenol red by integrated smart phone camera as a tool for the determination of neurotoxic compounds. Sensors. 2016;16:1212. doi: 10.3390/s16091212. PubMed DOI PMC
Pohanka M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta. 2014;119:412–416. doi: 10.1016/j.talanta.2013.11.045. PubMed DOI
Pohanka M. Biosensors based on cholinesterases. Chem. Listy. 2013;107:121–125.
Pohanka M. Cholinesterases in biorecognition and biosensors construction: A review. Anal. Lett. 2013;46:1849–1868. doi: 10.1080/00032719.2013.780240. DOI
Lu A.H., Salabas E.L., Schuth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007;46:1222–1244. doi: 10.1002/anie.200602866. PubMed DOI
Sandhu A., Handa H., Abe M. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology. 2010;21:442001. doi: 10.1088/0957-4484/21/44/442001. PubMed DOI
Amstad E., Textor M., Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 2011;3:2819–2843. doi: 10.1039/c1nr10173k. PubMed DOI
Li C.Y., Ma C., Wang F., Xi Z.J., Wang Z.F., Deng Y., He N.Y. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J. Nanosci. Nanotechnol. 2012;12:2964–2972. doi: 10.1166/jnn.2012.6428. PubMed DOI
Issa B., Obaidat I.M., Albiss B.A., Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013;14:21266–21305. doi: 10.3390/ijms141121266. PubMed DOI PMC
Borlido L., Azevedo A.M., Roque A.C.A., Aires-Barros M.R. Magnetic separations in biotechnology. Biotechnol. Adv. 2013;31:1374–1385. doi: 10.1016/j.biotechadv.2013.05.009. PubMed DOI
Plouffe B.D., Murthy S.K., Lewis L.H. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Rep. Prog. Phys. 2015;78:016601. doi: 10.1088/0034-4885/78/1/016601. PubMed DOI PMC
Gijs M.A.M., Lacharme F., Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 2009;110:1518–1563. doi: 10.1021/cr9001929. PubMed DOI
Centi S., Laschi S., Mascini M. Improvement of analytical performances of a disposable electrochemical immunosensor by using magnetic beads. Talanta. 2007;73:394–399. doi: 10.1016/j.talanta.2007.03.025. PubMed DOI
Liu X., Guan Y., Ma Z., Liu H. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir. 2004;20:10278–10282. doi: 10.1021/la0491908. PubMed DOI
Istamboulie G., Andreescu S., Marty J.-L., Noguer T. Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens. Bioelectron. 2007;23:506–512. doi: 10.1016/j.bios.2007.06.022. PubMed DOI
Günther A., Bilitewski U. Characterisation of inhibitors of acetylcholinesterase by an automated amperometric flow-injection system. Anal. Chim. Acta. 1995;300:117–125. doi: 10.1016/0003-2670(94)00352-M. DOI
Lui J., Günther A., Bilitewski U. Detection of methamidophos in vegetables using a photometric flow injection system. Environ. Monit. Assess. 1997;44:375–382. doi: 10.1023/A:1005704017083. DOI
Yamaura M., Camilo R.L., Sampaio L.C., Macêdo M.A., Nakamura M., Toma H.E. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2004;279:210–217. doi: 10.1016/j.jmmm.2004.01.094. DOI
Horák D., Babič M., Macková H., Beneš M.J. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J. Sep. Sci. 2007;30:1751–1772. doi: 10.1002/jssc.200700088. PubMed DOI
Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI
Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Marusak Z., Cardillo S., Salviulo G., Russo U., Stevanato R., et al. Charge binding of rhodamine derivative to oh- stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI
Heger Z., Cernei N., Guran R., Michalek P., Milosavljevic V., Kopel P., Zitka O., Kynicky J., Lany P., Adam V., et al. Gamma-Fe2O3 magnetic core functionalized with tetraethyl orthosilicate and 3-aminopropyl triethoxysilane for an isolation of H7N7 influenza serotype virions. Int. J. Electrochem. Sci. 2014;9:3374–3385.
Heger Z., Cernei N., Krizkova S., Masarik M., Kopel P., Hodek P., Zitka O., Adam V., Kizek R. Paramagnetic nanoparticles as a platform for fret-based sarcosine picomolar detection. Sci. Rep. 2015;5:8868. doi: 10.1038/srep08868. PubMed DOI PMC
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform orpheus as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI
Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., Reiner E. Molar absorption coefficients for the reduced ellman reagent: Reassessment. Anal. Biochem. 2003;312:224–227. doi: 10.1016/S0003-2697(02)00506-7. PubMed DOI
Gabrovska K., Marinov I., Godjevargova T., Portaccio M., Lepore M., Grano V., Diano N., Mita D.G. The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase. Int. J. Biol. Macromol. 2008;43:339–345. doi: 10.1016/j.ijbiomac.2008.07.006. PubMed DOI
Barteri M., Pala A., Rotella S. Structural and kinetic effects of mobile phone microwaves on acetylcholinesterase activity. Biophys. Chem. 2005;113:245–253. doi: 10.1016/j.bpc.2004.09.010. PubMed DOI
Kua J., Zhang Y., Eslami A.C., Butler J.R., McCammon J.A. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci. 2003;12:2675–2684. doi: 10.1110/ps.03318603. PubMed DOI PMC
Kaplan D., Barak D., Ordentlich A., Kronman C., Velan B., Shafferman A. Is aromaticity essential for trapping the catalytic histidine 447 in human acetylcholinesterase? Biochemistry. 2004;43:3129–3136. doi: 10.1021/bi030206n. PubMed DOI
Pohanka M., Adam V., Kizek R. Comparison of an alzheimer disease drug ability to bind acetylcholinesterase using both electrochemical and spectrophotometric assays. Res. Opin. Anim. Vet. Sci. 2014;4:203–207.
Stoytcheva M., Zlatev R., Velkova Z., Valdez B., Ovalle M. Analytical characteristics of electrochemical biosensors. Port. Electrochim. Acta. 2009;27:353–362. doi: 10.4152/pea.200903353. DOI
Cuartero M., García M.S., García-Cánovas F., Ortuño J.Á. New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta. 2013;110:8–14. doi: 10.1016/j.talanta.2013.03.022. PubMed DOI
Nikolelis D.P., Simantiraki M.G., Siontorou C.G., Toth K. Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Anal. Chim. Acta. 2005;537:169–177. doi: 10.1016/j.aca.2004.12.086. DOI
Pohanka M., Fusek J., Adam V., Kizek R. Carbofuran assay using gelatin based biosensor with acetylcholinesterase as a recogniton element. Int. J. Electrochem. Sci. 2013;8:71–79.
Shulga O., Kirchhoff J.R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem. Commun. 2007;9:935–940. doi: 10.1016/j.elecom.2006.11.021. DOI
Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Kim Y.B., Jung C.H., Choi S.J., Seo W.J., Cha S.H., Sok D.E. Potentiation effect of choline esters on choline-catalysed decarbamoylation of dimethylcarbamoyl-acetylcholinesterase. Biochem. J. 1992;284:153–160. doi: 10.1042/bj2840153. PubMed DOI PMC
Wilson I.B., Harrison M.A., Ginsburg S. Carbamyl derivatives of acetylcholinesterase. J. Biol. Chem. 1961;236:1498–1500. PubMed
Li H., Ricordel I., Tong L., Schopfer L.M., Baud F., Mégarbane B., Maury E., Masson P., Lockridge O. Carbofuran poisoning detected by mass spectrometry of butyrylcholinesterase adduct in human serum. J. Appl. Toxicol. 2009;29:149–155. doi: 10.1002/jat.1392. PubMed DOI
Solná R., Sapelnikova S., Skládal P., Winther-Nielsen M., Carlsson C., Emnéus J., Ruzgas T. Multienzyme electrochemical array sensor for determination of phenols and pesticides. Talanta. 2005;65:349–357. doi: 10.1016/j.talanta.2004.07.005. PubMed DOI
Pohanka M., Adam V., Kizek R. An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents. Sensors. 2013;13:11498–11506. doi: 10.3390/s130911498. PubMed DOI PMC
Gan N., Yang X., Xie D., Wu Y., Wen W. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors. 2010;10:625–638. doi: 10.3390/s100100625. PubMed DOI PMC