An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23999806
PubMed Central
PMC3821328
DOI
10.3390/s130911498
PII: s130911498
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa chemie MeSH
- analýza selhání vybavení MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- chemické bojové látky analýza chemie MeSH
- cholinesterasové inhibitory analýza chemie MeSH
- design vybavení MeSH
- konduktometrie přístrojové vybavení MeSH
- neurotoxiny analýza chemie MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- chemické bojové látky MeSH
- cholinesterasové inhibitory MeSH
- neurotoxiny MeSH
The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10(-12) mol/L for sarin, 6.31 × 10(-12) mol /L for soman, 6.17 × 10(-11) mol/L for tabun, and 2.19 × 10(-11) mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples.
Zobrazit více v PubMed
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008 - Present) Expert Opin. Ther. Pat. 2012;22:871–886. PubMed
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–229. PubMed
Clement J.G. Toxicity of the combined nerve agents GB/GF in mice: Efficacy of atropine and various oximes as antidotes. Arch. Toxicol. 1994;68:64–66. PubMed
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. PubMed
Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013;46:1849–1868.
Miao Y., He N., Zhu J.J. History and new developments of assay for cholinesterase activity and inhibition. Chem. Rev. 2010;110:5216–5234. PubMed
Andreescu S., Marty J.L. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomol. Eng. 2006;23:1–15. PubMed
Pundir C.S., Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012;429:19–31. PubMed
Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. PubMed
Furtado M.D., Rossetti F., Chanda S., Yourick D. Exposure to nerve agents: From status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology. 2012;33:1476–1490. PubMed
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. PubMed
Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374.
Pohanka M., Fusek J., Adam V., Kizek R. Carbofuran assay using gelatin based biosensor with acetylcholinesterase as a recognition element. Int. J. Electrochem. Sci. 2013;8:71–79.
Turdean G.L., Popescu I.C., Oniciu L., Thevenot D.R. Sensitive detection of organophosphorus pesticides using a needle type amperometric acetylcholinesterase-based bioelectrode. Thiocholine electrochemistry and immobilised enzyme inhibition. J. Enzyme Inhib. Med. Chem. 2002;17:107–115. PubMed
Yang L., Wang G., Liu Y. An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides. Anal. Biochem. 2013;437:144–149. PubMed
Jeanty G., Wojciechowska A., Marty J.L., Trojanowicz M. Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin. Anal. Bioanal. Chem. 2002;373:691–695. PubMed
Bucur M.P., Bucur B., Radu G.L. Critical evaluation of acetylcholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase. Sensors. 2013;13:1603–1613. PubMed PMC
Hubaux A., Vos G. Decision and detection limits for linear calibration curves. Anal. Chem. 1970;42:849–855.
Luo W., Li H., Zhang Y., Ang C.Y.W. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 2001;753:253–257. PubMed
Liu S.Q., Zheng Z.Z., Li X.Y. Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013;405:63–90. PubMed
Seto Y., Kanamori-Kataoka M., Tsuge K., Ohsawa I., Iura K., Itoi T., Sekiguchi H., Matsushita K., Yamashiro S., Sano Y., et al. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction. Anal. Chem. 2013;85:2659–2666. PubMed
Mwila K., Burton M.H., Van Dyk J.S., Pletschke B.I. The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ. Monit. Assess. 2013;185:2315–2327. PubMed
Vymazalova K., Halamek E., Kadlcak J. Photocolorimetric biosensor for detection of cholinergic organophosphorus compounds. Def. Sci. J. 2012;62:399–403.
Chen C.H., Yang K.L. A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products. Sens. Actuators B-Chem. 2013;181:368–374.
Chen D., Wang J.J., Xu Y., Li D.H., Zhang L.Y., Li Z.X. Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor. Biosens. Bioelectron. 2013;41:163–167. PubMed
Upadhyay L.S.B., Verma N. Enzyme inhibition based biosensors: A review. Anal. Lett. 2013;46:225–241.
Arduini F., Guidone S., Amine A., Palleschi G., Moscone D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators B-Chem. 2013;179:201–208.
Huang X., Tu H.Y., Zhu D.H., Du D., Zhang A.D. A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta. 2009;78:1036–1042. PubMed
Arduini F., Amine A., Moscone D., Ricci F., Palleschi G. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal. Bioanal. Chem. 2007;388:1049–1057. PubMed
Schulze H., Muench S.B., Villatte F., Schmid R.D., BAchmann T.T. Insecticide detection through protein engineering of nippostrongylus brasiliensis acetylcholinesterase B. Anal. Chem. 2005;77:5823–5830. PubMed
Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. PubMed
de los Rios C. Cholinesterase inhibitors: A patent review (2007–2011) Expert Opin. Ther. Pat. 2012;22:853–869. PubMed
Holzgrabe U., Kapkova P., Alptuzun V., Scheiber J., Kugelmann E. Targeting acetylcholinesterase to treat neurodegeneration. Expert. Opin. Ther. Tar. 2007;11:161–179. PubMed
Pietsch M., Christian L., Inhester T., Petzold S., Gutschow M. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile. FEBS J. 2009;276:2292–2307. PubMed
Turdean G.L., Turdean M.S. Synergetic effect of organic solvents and paraoxon on the immobilized acetylcholinesterase. Pest. Biochem. Physiol. 2008;90:73–81.
Fekonja O., Zorec-Karlovsek M., El Kharbili M., Fournier D., Stojan J. Inhibition and protection of cholinesterases by methanol and ethanol. J. Enzyme Inhib. Med. Chem. 2007;22:407–415. PubMed
Mionetto N., Marty J.L. Acetylcholinestrase in organic-solvents for detection of pesticides - biosensors application. Biosens. Bioelectron. 1994;9:463–470.
Sheijooni-Fumani N., Hassan J., Yousefi S.R. Determination of aflatoxin B1 in cereals by homogeneous liquid-liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J. Sep. Sci. 2011;34:1333–1337. PubMed
Pohanka M. Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett. 2013;46:1306–1315.