Color Change of Phenol Red by Integrated Smart Phone Camera as a Tool for the Determination of Neurotoxic Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27618041
PubMed Central
PMC5038618
DOI
10.3390/s16091212
PII: s16091212
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, biosensor, colorimetry, drop assay, inhibitor, phenol red, smart phone,
- Publikační typ
- časopisecké články MeSH
The use of a cell phone as a detection system is easy, simple and does not require trained personnel, which is in contrast to standard laboratory instruments. This paper deals with immobilization of acetylcholinesterase (AChE) in a gelatin matrix, and phenol red, as an indicator of AChE activity, is used in order to establish a method that is easily compatible with a camera device. AChE splits acetylcholine into choline and acetic acid, which changes the pH of a medium, resulting in a phenol red color change. The coloration changed in presence of an AChE inhibitor. Measurements were performed on 3D-printed, tube-shaped holder, and digital photography, with subsequent analysis of red-green-blue (RGB), served for assay purposes. Calibration of AChE inhibitors, tacrine and galantamine, was performed, with limit of detection equal to 1.1 nM and 1.28 µM, respectively. Interferences were also measured, resulting in a proof-of-method stability. The method was further successfully validated for the standard Ellman's assay, and verified on murine plasma samples spiked with inhibitors.
Zobrazit více v PubMed
Soreq H., Seidman S. Acetylcholinesterase—New roles for an old actor. Nat. Rev. Neurosci. 2001;2:294–302. doi: 10.1038/35067589. PubMed DOI
Pohanka M. Butyrylcholinesterase as a biochemical marker. Bratisl. Lek. Listy. 2012;114:726–734. doi: 10.4149/BLL_2013_153. PubMed DOI
Pohanka M. Cholinesterase, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–223. doi: 10.5507/bp.2011.036. PubMed DOI
Pohanka M. Biosensors based on cholinesterases. Chem. Listy. 2013;107:121–125.
Pohanka M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015;69:4–16. doi: 10.2478/s11696-014-0542-x. DOI
Worek F., Mast U., Kiderlen D., Diepold C., Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta. 1999;288:73–90. doi: 10.1016/S0009-8981(99)00144-8. PubMed DOI
Kostelnik A., Cegan A., Pohanka M. Electrochemical determination of activity of acetylcholinesterase immobilized on magnetic particles. Int. J. Electrochem. Sci. 2016;11:4840–4849. doi: 10.20964/2016.06.39. DOI
Pohanka M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta. 2014;119:412–416. doi: 10.1016/j.talanta.2013.11.045. PubMed DOI
Morís-Varas F., Shah A., Aikens J., Nadkarni N.P., Rozzell J.D., Demirjian D.C. Visualization of enzyme-catalyzed reactions using ph indicators: Rapid screening of hydrolase libraries and estimation of the enantioselectivity. Bioorg. Med. Chem. 1999;7:2183–2188. doi: 10.1016/S0968-0896(99)00149-2. PubMed DOI
Munjal N., Sawhney S.K. Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme Microb. Technol. 2002;30:613–619. doi: 10.1016/S0141-0229(02)00019-4. DOI
Mogharabi M., Nassiri-Koopaei N., Bozorgi-Koushalshahi M., Nafissi-Varcheh N., Bagherzadeh G., Faramarzi M.A. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorg. Chem. Appl. 2012;2012:823830. doi: 10.1155/2012/823830. PubMed DOI PMC
Tanriseven A., Doğan Ş. A novel method for the immobilization of β-galactosidase. Process Biochem. 2002;38:27–30. doi: 10.1016/S0032-9592(02)00049-3. DOI
Bigi A., Cojazzi G., Panzavolta S., Rubini K., Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials. 2001;22:763–768. doi: 10.1016/S0142-9612(00)00236-2. PubMed DOI
Zheng Y., Liu Z., Jing Y., Li J., Zhan H. An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides. Sens. Actuators B Chem. 2015;210:389–397. doi: 10.1016/j.snb.2015.01.003. DOI
García A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Paya I., Palma A.J., Capitán-Vallvey L.F. Mobile phone platform as portable chemical analyzer. Sens. Actuators B Chem. 2011;156:350–359. doi: 10.1016/j.snb.2011.04.045. DOI
Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15:13752–13762. doi: 10.3390/s150613752. PubMed DOI PMC
Petryayeva E., Algar W.R. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal. Chem. 2014;86:3195–3202. doi: 10.1021/ac500131r. PubMed DOI
Meier R.J., Schreml S., Wang X.-D., Landthaler M., Babilas P., Wolfbeis O.S. Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew. Chemie Int. Ed. 2011;50:10893–10896. doi: 10.1002/anie.201104530. PubMed DOI
Grudpan K., Kolev S.D., Lapanantnopakhun S., McKelvie I.D., Wongwilai W. Applications of everyday it and communications devices in modern analytical chemistry: A review. Talanta. 2015;136:84–94. doi: 10.1016/j.talanta.2014.12.042. PubMed DOI
Lourenço N.M.T., Österreicher J., Vidinha P., Barreiros S., Afonso C.A.M., Cabral J.M.S., Fonseca L.P. Effect of gelatin-ionic liquid functional polymers on glucose oxidase and horseradish peroxidase kinetics. React. Funct. Polym. 2011;71:489–495. doi: 10.1016/j.reactfunctpolym.2011.01.006. DOI
Zhu H., Sikora U., Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137:2541–2544. doi: 10.1039/c2an35071h. PubMed DOI PMC
Bwambok D.K., Christodouleas D.C., Morin S.A., Lange H., Phillips S.T., Whitesides G.M. Adaptive use of bubble wrap for storing liquid samples and performing analytical assays. Anal. Chem. 2014;86:7478–7485. doi: 10.1021/ac501206m. PubMed DOI
Lu Y., Shi W., Qin J., Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30:579–582. doi: 10.1002/elps.200800586. PubMed DOI
Su L., Feng J., Zhou X., Ren C., Li H., Chen X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012;84:5753–5758. doi: 10.1021/ac300939z. PubMed DOI
Kanjanawarut R., Su X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal. Chem. 2009;81:6122–6129. doi: 10.1021/ac900525k. PubMed DOI
Shen L., Hagen J.A., Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12:4240–4243. doi: 10.1039/c2lc40741h. PubMed DOI
Jokerst J.C., Adkins J.A., Bisha B., Mentele M.M., Goodridge L.D., Henry C.S. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 2012;84:2900–2907. doi: 10.1021/ac203466y. PubMed DOI
Timur S., Telefoncu A. Acetylcholinesterase (AChE) electrodes based on gelatin and chitosan matrices for the pesticide detection. Artif. Cells Blood Substit. Biotechnol. 2004;32:427–442. doi: 10.1081/BIO-200027497. PubMed DOI
Pohanka M., Fusek J., Adam V., Kizek R. Carbofuran assay using gelatin based biosensor with acetylcholinesterase as a recogniton element. Int. J. Electrochem. Sci. 2013;8:71–79.
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC
Hynes W.F., Doty N.J., Zarembinski T.I., Schwartz M.P., Toepke M.W., Murphy W.L., Atzet S.K., Clark R., Melendez J.A., Cady N.C. Micropatterning of 3D microenvironments for living biosensor applications. Biosensors. 2014;4:28–44. doi: 10.3390/bios4010028. PubMed DOI PMC
Pohanka M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett. 2013;12:1849–1868. doi: 10.1080/00032719.2013.780240. DOI
Pohanka M., Vlcek V. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs. Int. Toxicol. 2014;7:215–218. doi: 10.2478/intox-2014-0031. PubMed DOI PMC
Liston D.R., Nielsen J.A., Villalobos A., Chapin D., Jones S.B., Hubbard S.T., Shalaby I.A., Ramirez A., Nason D., White W.F. Pharmacology of selective acetylcholinesterase inhibitors: Implications for use in alzheimer’s disease. Eur. J. Pharmacol. 2004;486:9–17. doi: 10.1016/j.ejphar.2003.11.080. PubMed DOI
Di Giovanni S., Borloz A., Urbain A., Marston A., Hostettmann K., Carrupt P.-A., Reist M. In vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods. Eur. J. Pharmacol. 2008;33:109–119. doi: 10.1016/j.ejps.2007.10.004. PubMed DOI
Wiedmer T., di Francesco C., Brodbeck U. Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase. Eur. J. Pharm. Sci. 1979;102:59–64. doi: 10.1111/j.1432-1033.1979.tb06262.x. PubMed DOI
Pohanka M. Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal. Lett. 2012;45:367–374. doi: 10.1080/00032719.2011.644743. DOI
Rhee I.K., Appels N., Luijendijk T., Irth H., Verpoorte R. Determining acetylcholinesterase inhibitory activity in plant extracts using a fluorimetric flow assay. Phytochem. Anal. 2003;14:145–149. doi: 10.1002/pca.695. PubMed DOI