Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
24893223
PubMed Central
PMC4100123
DOI
10.3390/ijms15069809
PII: ijms15069809
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa imunologie MeSH
- butyrylcholinesterasa imunologie MeSH
- cholinesterasové inhibitory chemie imunologie MeSH
- imunita účinky léků MeSH
- imunitní systém účinky léků MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.
Zobrazit více v PubMed
Ofek K., Soreq H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem. Biol. Interact. 2013;203:113–119. doi: 10.1016/j.cbi.2012.07.007. PubMed DOI
De los Rios C. Cholinesterase inhibitors: A patent review (2007–2011) Expert Opin. Ther. Pat. 2012;22:853–869. doi: 10.1517/13543776.2012.701619. PubMed DOI
Silman I., Sussman J.L. Acetylcholinesterase: “Classical” and “non-classical” functions and pharmacology. Curr. Opin. Pharmacol. 2005;5:293–302. doi: 10.1016/j.coph.2005.01.014. PubMed DOI
Tayeb H.O., Yang H.D., Price B.H., Tarazi F.I. Pharmacotherapies for Alzheimer’s disease: Beyond cholinesterase inhibitors. Pharmacol. Ther. 2012;134:8–25. PubMed
Haines S.R., Thurtell M.J. Treatment of ocular myasthenia gravis. Curr. Treat. Option Neurol. 2012;14:103–112. PubMed
Marrs T.C., Maynard R.L. Neurotranmission systems as targets for toxicants: A review. Cell Biol. Toxicol. 2013;29:381–396. doi: 10.1007/s10565-013-9259-9. PubMed DOI
Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Rakowski F., Srinivasan J., Sternberg P.W., Karbowski J. Synaptic polarity of the interneuron circuit controlling c. Elegans locomotion. Front. Comput. Neurosci. 2013;7:128. PubMed PMC
Kosinski R.A., Zaremba M. Dynamics of the model of the caenorhabditis elegans neural network. Acta Phys. Pol. B. 2007;38:2201–2210.
Rand J.B. Acetylcholine. WormBook. 2007 doi: 10.1895/wormbook1.131.1. PubMed DOI PMC
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012;13:2219–2238. PubMed PMC
Bellier J.P., Kimura H. Peripheral type of choline acetyltransferase: Biological and evolutionary implications for novel mechanisms in cholinergic system. J. Chem. Neuroanat. 2011;42:225–235. doi: 10.1016/j.jchemneu.2011.02.005. PubMed DOI
Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br. J. Pharmacol. 2008;154:1558–1571. doi: 10.1038/bjp.2008.185. PubMed DOI PMC
Rosas-Ballina M., Tracey K.J. Cholinergic control of inflammation. J. Intern. Med. 2009;265:663–679. PubMed PMC
Bernik T.R., Friedman S.G., Ochani M., DiRaimo R., Ulloa L., Yang H., Sudan S., Czura C.J., Ivanova S.M., Tracey K.J. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 2002;195:781–788. doi: 10.1084/jem.20011714. PubMed DOI PMC
Borovikova L.V., Ivanova S., Zhang M.H., Yang H., Botchkina G.I., Watkins L.R., Wang H.C., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi: 10.1038/35013070. PubMed DOI
Ofek K., Krabbe K.S., Evron T., Debecco M., Nielsen A.R., Brunnsgaad H., Yirmiya R., Soreq H., Pedersen B.K. Cholinergic status modulations in human volunteers under acute inflammation. J. Mol. Med. 2007;85:1239–1251. PubMed
Andersson U., Tracey K.J. Neural reflexes in inflammation and immunity. J. Exp. Med. 2012;209:1057–1068. doi: 10.1084/jem.20120571. PubMed DOI PMC
Pavlov V.A., Ochani M., Gallowitsch-Puerta M., Ochani K., Huston J.M., Czura C.J., Al-Abed Y., Tracey K.J. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. USA. 2006;103:5219–5223. doi: 10.1073/pnas.0600506103. PubMed DOI PMC
Pavlov V.A., Parrish W.R., Rosas-Ballina M., Ochani M., Puerta M., Qchani K., Chavan S., Al-Abed Y., Tracey K.J. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2009;23:41–45. doi: 10.1016/j.bbi.2008.06.011. PubMed DOI PMC
Tracey K.J. The inflammatory reflex. Nature. 2002;420:853–859. doi: 10.1038/nature01321. PubMed DOI
Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9:418–428. doi: 10.1038/nri2566. PubMed DOI PMC
Wang H., Yu M., Ochani M., Amella C.A., Tanovic M., Susarla S., Li J.H., Wang H.C., Yang H., Ulloa L., et al. Nicotinic acetylcholine receptor alpha 7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–388. doi: 10.1038/nature01339. PubMed DOI
Wang H., Liao H., Ochani M., Justiniani M., Lin X.C., Yang L.H., Al-Abed Y., Wang H.C., Metz C., Miller E.J., et al. Cholinergic agonists inhibit hmgb1 release and improve survival in experimental sepsis. Nat. Med. 2004;10:1216–1221. doi: 10.1038/nm1124. PubMed DOI
Silva-Herdade A.S., Saldanha C. Effects of acetylcholine on an animal mode of inflammation. Clin. Hemorheol. Microcirc. 2013;53:209–216. PubMed
Coin A., Perissinotto E., Catanzaro S., Mosele M., de Rui M., Girardi A., Inelmen E.M., Toffanello E.D., Manzato E., Sergi G. Effects of 21 months of cholinesterase inhibitors on cognitive and functional decline in demented patients. Aging Clin. Exp. Res. 2012;24:14–16. PubMed
Iwasaki T., Yoneda M., Nakajima A., Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern. Med. 2007;46:1633–1639. doi: 10.2169/internalmedicine.46.0049. PubMed DOI
Karlsson D., Fallarero A., Brunhofer G., Mayer C., Prakash O., Mohan C.G., Vuorela P., Erker T. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors. Eur. J. Pharm. Sci. 2012;47:190–205. doi: 10.1016/j.ejps.2012.05.014. PubMed DOI
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 2011;155:219–229. doi: 10.5507/bp.2011.036. PubMed DOI
Noelker C., Stuckenholz V., Reese J.P., Alvarez-Fischer D., Sankowski R., Rausch T., Oertel W.H., Hartmann A., van Patten S., Al-Abed Y., et al. Cni-1493 attenuates neuroinflammation and dopaminergic neurodegeneration in the acute mptp mouse model of Parkinson’s disease. Neurodegener. Dis. 2013;12:103–110. doi: 10.1159/000342714. PubMed DOI
Lee L., Kosuri P., Arancio O. Picomolar amyloid-beta peptides enhance spontaneous astrocyte calcium transients. J. Alzheimers Dis. 2014;38:49–62. PubMed PMC
Sun P., Zhou K.W., Wang S., Li P., Chen S.J., Lin G.P., Zhao Y., Wang T.H. Involvement of mapk/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One. 2013;8:e69424. PubMed PMC
De Haan J.J., Hadfoune M., Lubbers T., Hodin C., Lenaerts K., Ito A., Verbaeys I., Skynner M.J., Cailotto C., van der Vliet J., et al. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am. J. Physiol.-Gastroint. Liver Physiol. 2013;305:G383–G391. doi: 10.1152/ajpgi.00333.2012. PubMed DOI
Starec M., Sinet M., Kodym P., Rosina J., Fiserova A., Desforges B., Rouveix B. The effect of drugs on the mortality of mice inoculated with friend leukaemia virus or toxoplasma gondii. Physiol. Res. 1997;46:107–111. PubMed
Pohanka M. Role of oxidative stress in infectious diseases. A review. Folia Microbiol. 2013;58:503–513. doi: 10.1007/s12223-013-0239-5. PubMed DOI
Smirnov I., Belogurov A., Friboulet A., Masson P., Gabibov A., Renard P.Y. Strategies for the selection of catalytic antibodies against organophosphorus nerve agents. Chem.-Biol. Interact. 2013;203:196–201. doi: 10.1016/j.cbi.2012.10.011. PubMed DOI
Da Silva V.B., de Andrade P., Kawano D.F., Morais P.A.B., de Almeida J.R., Carvalho I., Taft C.A., da Silva C. In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem. 2011;3:947–960. doi: 10.4155/fmc.11.67. PubMed DOI
Krall W.J., Sramek J.J., Cutler N.R. Cholinesterase inhibitors: A therapeutic strategy for alzheimer disease. Ann. Pharmacother. 1999;33:441–450. doi: 10.1345/aph.18211. PubMed DOI
Arduini F., Errico I., Amine A., Micheli L., Palleschi G., Moscone D. Enzymatic spectrophotometric method for aflatoxin b detection based on acetylcholinesterase inhibition. Anal. Chem. 2007;79:3409–3415. doi: 10.1021/ac061819j. PubMed DOI
Arduini F., Amine A., Moscone D., Palleschi G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin b-1 detection (review) Microchim. Acta. 2010;170:193–214. doi: 10.1007/s00604-010-0317-1. DOI
Brazzolotto X., Wandhammer M., Ronco C., Trovaslet M., Jean L., Lockridge O., Renard P.Y., Nachon F. Human butyrylcholinesterase produced in insect cells: Huprine-based affinity purification and crystal structure. FEBS J. 2012;279:2905–2916. doi: 10.1111/j.1742-4658.2012.08672.x. PubMed DOI
Massoulie J. The origin of the molecular diversity and functional floating of cholinesterases. Neurosignals. 2002;11:130–143. doi: 10.1159/000065054. PubMed DOI
Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI
Furtado M.D., Rossetti F., Chanda S., Yourick D. Exposure to nerve agents: From status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology. 2012;33:1476–1490. doi: 10.1016/j.neuro.2012.09.001. PubMed DOI
Dorandeu F., Foquin A., Briot R., Delacour C., Denis J., Alonso A., Froment M.T., Renault F., Lallement G., Masson P. An unexpected plasma cholinesterase activity rebound after challenge with a high dose of the nerve agent vx. Toxicology. 2008;248:151–157. doi: 10.1016/j.tox.2008.03.013. PubMed DOI
Raghu P., Madhusudana Reddy T., Reddaiah K., Swamy B.E., Sreedhar M. Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: A voltammetric study. Food Chem. 2014;142:188–196. doi: 10.1016/j.foodchem.2013.07.047. PubMed DOI
Ahmed M., Rocha J.B., Mazzanti C.M., Morsch A.L., Cargnelutti D., Correa M., Loro V., Morsch V.M., Schetinger M.R. Malathion, carbofuran and paraquat inhibit bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology. 2007;16:363–369. doi: 10.1007/s10646-007-0137-1. PubMed DOI
Tian Y., Zhou S.F., Gao Y., Zhou Y.J., Shi R., Heiger-Bernays W., Ding Y., Wang P., Han S., Shen X.M. Effects of repeated maternal oral exposure to low levels of trichlorfon on development and cytogenetic toxicity in 3-day mouse embryos. Food Chem. Toxicol. 2011;49:2655–2659. doi: 10.1016/j.fct.2011.07.011. PubMed DOI
Becker R.E., Unni L.K., Greig N.H. Resurrecting clinical pharmacology as a context for alzheimer disease drug development. Curr. Alzheimer Res. 2009;6:79–81. doi: 10.2174/156720509787313916. PubMed DOI PMC
López-Arrieta J.M., Schneider L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006:CD003155. PubMed
Yang Y.X., Niu L.Z., Li S.N. Purification and studies on characteristics of cholinesterases from daphnia magna. J. Zhejiang Univ.-Sci. B. 2013;14:325–335. doi: 10.1631/jzus.B1200113. PubMed DOI PMC
Oropesa A.L., Gravato C., Sanchez S., Soler F. Characterization of plasma cholinesterase from the white stork (ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides. Ecotoxicol. Environ. Saf. 2013;97:131–138. doi: 10.1016/j.ecoenv.2013.07.022. PubMed DOI
Zawadzka A., Lózinska I., Moleda Z., Panasiewicz M., Czarnocki Z. Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers. J. Pineal Res. 2013;54:435–441. PubMed
Bartolucci C., Stojan J., Yu Q.S., Greig N.H., Lamba D. Kinetics of torpedo californica acetylcholinesterase inhibition by bisnorcymserine and crystal structure of the complex with its leaving group. Biochem. J. 2012;444:269–277. doi: 10.1042/BJ20111675. PubMed DOI PMC
Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI
Ballatore C., Zhang B., Trojanowski J.Q., Lee V.M.Y., Smith A.B. In situ blood-brain barrier permeability of a c-10 paclitaxel carbamate. Bioorg. Med. Chem. Lett. 2008;18:6119–6121. doi: 10.1016/j.bmcl.2008.10.024. PubMed DOI PMC
Prades R., Guerrero S., Araya E., Molina C., Salas E., Zurita E., Selva J., Egea G., Lopez-Iglesias C., Teixido M., et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205. doi: 10.1016/j.biomaterials.2012.06.063. PubMed DOI
Lee N.Y., Kang Y.S. The inhibitory effect of rivastigmine and galantamine on choline transport in brain capillary endothelial cells. Biomol. Ther. 2010;18:65–70. doi: 10.4062/biomolther.2010.18.1.065. DOI
Di Stefano A., Iannitelli A., Laserra S., Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv. 2011;8:581–603. doi: 10.1517/17425247.2011.561311. PubMed DOI
Beilin B., Bessler H., Papismedov L., Weinstock M., Shavit Y. Continuous physostigmine combined with morphine-based patient-controlled analgesia in the postoperative period. Acta Anaesthesiol. Scand. 2005;49:78–84. doi: 10.1111/j.1399-6576.2004.00548.x. PubMed DOI
Arkypova V.N., Dzyadevych S.V., Soldatkin A.P., El’skaya A.V., Martelet C., Jaffrezic-Renault N. Development and optimisation of biosensors based on ph-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosens. Bioelectron. 2003;18:1047–1053. doi: 10.1016/S0956-5663(02)00222-1. PubMed DOI
Dzyadevich S.V., Arkhypova V.N., Soldatkin A.P., El’skaya A.V., Martelet C., Jaffrezic-Renault N. Enzyme biosensor for tomatine detection in tomatoes. Anal. Lett. 2004;37:1611–1624. doi: 10.1081/AL-120037591. DOI
Benilova I.V., Arkhypova V.N., Dzyadeviych S.V., Jaffrezic-Renault N., Martelet C., Soldatkin A.P. Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pest. Biochem. Physiol. 2006;86:203–210. doi: 10.1016/j.pestbp.2006.04.002. DOI
Ingkaninan K., Phengpa P., Yuenyongsawad S., Khorana N. Acetylcholinesterase inhibitors from stephania venosa tuber. J. Pharm. Pharmacol. 2006;58:695–700. doi: 10.1211/jpp.58.5.0015. PubMed DOI
Xiao H.T., Peng J., Liang Y., Yang J., Bai X., Hao X.Y., Yang F.M., Sun Q.Y. Acetylcholinesterase inhibitors from corydalis yanhusuo. Nat. Prod. Res. 2011;25:1418–1422. doi: 10.1080/14786410802496911. PubMed DOI
Jann M.W., Shirley K.L., Small G.W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 2002;41:719–739. doi: 10.2165/00003088-200241100-00003. PubMed DOI
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008-present) Expert Opin. Ther. Pat. 2012;22:871–886. doi: 10.1517/13543776.2012.701620. PubMed DOI
Alfirevic A., Mills T., Carr D., Barratt B.J., Jawaid A., Sherwood J., Smith J.C., Tugwood J., Hartkoorn R., Owen A., et al. Tacrine-induced liver damage: An analysis of 19 candidate genes. Pharmacogenet. Genomics. 2007;17:1091–1100. PubMed
Carr D.F., Alfirevic A., Tugwood J.D., Barratt B.J., Sherwood J., Smith J., Pirmohamed M., Park B.K. Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity. Pharmacogenet. Genomics. 2007;17:961–972. doi: 10.1097/FPC.0b013e3282f00919. PubMed DOI
Pathak M.K., Fareed M., Srivastava A.K., Pangtey B.S., Bihari V., Kuddus M., Kesavachandran C. Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among sprayers exposed to mixture of pesticides. Environ. Sci. Pollut. Res. 2013;20:7296–7300. doi: 10.1007/s11356-013-1743-5. PubMed DOI
Berg R.M.G., Ofek K., Qvist T., Tofteng F., Soreq H., Moller K. Cholinesterase modulations in patients with acute bacterial meningitis. Scand. J. Clin. Lab. Investig. 2011;71:350–352. doi: 10.3109/00365513.2011.558107. PubMed DOI
Sonali N., Tripathi M., Sagar R., Velpandian T., Subbiah V. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer’s patients. CNS Neurosci. Ther. 2013;19:91–97. doi: 10.1111/cns.12036. PubMed DOI PMC
Bond M., Rogers G., Peters J., Anderson R., Hoyle M., Miners A., Moxham T., Davis S., Thokala P., Wailoo A., et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of technology appraisal no. 111): A systematic review and economic model. Health Technol. Asses. 2012;16:1–470. PubMed PMC
Lilienfeld S. Galantamine—A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002;8:159–176. doi: 10.1111/j.1527-3458.2002.tb00221.x. PubMed DOI PMC
Bai D.L., Tang X.C., He X.C. Huperzine a, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem. 2000;7:355–374. doi: 10.2174/0929867003375281. PubMed DOI
Cheewakriengkrai L., Gauthier S. A 10-year perspective on donepezil. Expert Opin. Pharmacother. 2013;14:331–338. doi: 10.1517/14656566.2013.760543. PubMed DOI
Zhang H.C., Liang H., Kuang P.Q., Yuan Q.P., Wang Y. Simultaneously preparative purification of huperzine a and huperzine b from huperzia serrata by macroporous resin and preparative high performance liquid chromatography. J. Chromatogr. B. 2012;904:65–72. doi: 10.1016/j.jchromb.2012.07.019. PubMed DOI
Zhang J.M., Hu G.Y. Huperzine a, a nootropic alkaloid, inhibits n-methyl-d-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience. 2001;105:663–669. doi: 10.1016/S0306-4522(01)00206-8. PubMed DOI
Zhang Y.H., Zhao X.Y., Chen X.Q., Wang Y., Yang H.H., Hu G.Y. Spermidine antagonizes the inhibitory effect of huperzine a on h-3 dizocilpine (mk-801) binding in synaptic membrane of rat cerebral cortex. Neurosci. Lett. 2002;319:107–110. doi: 10.1016/S0304-3940(01)02565-4. PubMed DOI
Heinrich M., Teoh H.L. Galanthamine from snowdrop—The development of a modern drug against Alzheimer’s disease from local caucasian knowledge. J. Ethnopharmacol. 2004;92:147–162. doi: 10.1016/j.jep.2004.02.012. PubMed DOI
Rainer M. Galanthamine in Alzheimer’s disease-A new alternative to tacrine? CNS Drugs. 1997;7:89–97. doi: 10.2165/00023210-199707020-00001. PubMed DOI
Pavlov V.A., Ochani M., Parrish W.R., Rosas-Ballina M., Ochani K., Al-Abed Y., Tracey K.J. The anti-inflammatory efficacy of galantamine is dependent on the integrity of the cholinergic anti-inflammatory pathway. Shock. 2007;27:23.
Takata K., Kitamura Y., Saeki M., Terada M., Kagitani S., Kitamura R., Fujikawa Y., Maelicke A., Tomimoto H., Taniguchi T., et al. Galantamine-induced amyloid-beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem. 2010;285:40180–40191. doi: 10.1074/jbc.M110.142356. PubMed DOI PMC
Liu Z.H., Ma Y.F., Wu J.S., Gan J.X., Xu S.W., Jiang G.Y. Effect of cholinesterase inhibitor galanthamine on circulating tumor necrosis factor alpha in rats with lipopolysaccharide-induced peritonitis. Chin. Med. J. 2010;123:1727–1730. PubMed
Hwang J., Hwang H., Lee H.W., Suk K. Microglia signaling as a target of donepezil. Neuropharmacology. 2010;58:1122–1129. doi: 10.1016/j.neuropharm.2010.02.003. PubMed DOI
Sochocka M., Zaczynska E., Leszek J., Siemieniec W., Blach-Olszewska Z. Effect of donepezil on innate antiviral immunity of human leukocytes. J. Neurol. Sci. 2008;273:75–80. PubMed
Sochocka M., Zaczynska E., Tabol A., Czarny A., Leszek J., Sobczynski M. The influence of donepezil and egb 761 on the innate immunity of human leukocytes effect on the NF-κB system. Int. Immunopharmacol. 2010;10:1505–1513. doi: 10.1016/j.intimp.2010.08.024. PubMed DOI
Tang X.C., Kindel G.H., Kozikowski A.P., Hanin I. Comparison of the effects of natural and synthetic huperzine-a on rat brain cholinergic function in vitro and in vivo. J. Enthnopharmacol. 1994;44:147–155. doi: 10.1016/0378-8741(94)01182-6. PubMed DOI
White J.D., Li Y., Kim J., Terinek M. A novel synthesis of (−)-huperzine a via tandem intramolecular aza-prins cyclization-cyclobutane fragmentation. Org. Lett. 2013;15:882–885. doi: 10.1021/ol400012s. PubMed DOI
Ma X., Gang D.R. In vitro production of huperzine a, a promising drug candidate for Alzheimer’s disease. Phytochemistry. 2008;69:2022–2028. PubMed
Leman L., Kitson S.L., Brown R.T., Cairns J., Watters W., McMordie A., Murrell V.L., Marfurt J. Synthesis of isotopically labelled c-14 zt-1 (debio-9902), d(3) zt-1 and (−)-d(3) huperzinea, a new generation of acetylcholinesterase inhibitors. J. Labelledc Compd. Rad. 2011;54:720–730. doi: 10.1002/jlcr.1918. DOI
Hedberg M.M., Clos M.V., Ratia M., Gonzalez D., Lithner C.U., Camps P., Munoz-Torrero D., Badia A., Gimenez-Llort L., Nordberg A. Effect of huprine x on beta-amyloid, synaptophysin and alpha 7 neuronal nicotinic acetylcholine receptors in the brain of 3xtg-ad and appswe transgenic mice. Neurodegener. Dis. 2010;7:379–388. doi: 10.1159/000287954. PubMed DOI
Wang J., Chen F., Zheng P., Deng W.J., Yuan J., Peng B., Wang R.C., Liu W.J., Zhao H., Wang Y.Q., et al. Huperzine a ameliorates experimental autoimmune encephalomyelitis via the suppression of t cell-mediated neuronal inflammation in mice. Exp. Neurol. 2012;236:79–87. PubMed
Wang Z.F., Tang X.C. Huperzine a protects c6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett. 2007;581:596–602. doi: 10.1016/j.febslet.2007.01.016. PubMed DOI
Wang Z.F., Wang J., Zhang H.Y., Tang X.C. Huperzine a exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J. Neurochem. 2008;106:1594–1603. doi: 10.1111/j.1471-4159.2008.05504.x. PubMed DOI
Darreh-Shori T., Soininen H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies. Curr. Alzheimer Res. 2010;7:67–73. PubMed
Darreh-Shori T., Hellstrom-Lindahl E., Flores-Flores C., Guan Z.Z., Soreq H., Nordberg A. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J. Neurochem. 2004;88:1102–1113. doi: 10.1046/j.1471-4159.2003.02230.x. PubMed DOI
Bastiat G., Plourde F., Motulsky A., Furtos A., Dumont Y., Quirion R., Fuhrmann G., Leroux J.C. Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials. 2010;31:6031–6038. doi: 10.1016/j.biomaterials.2010.04.009. PubMed DOI PMC
Field R.H., Gossen A., Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: Reconciling inflammatory and cholinergic hypotheses of delirium. J. Neurosci. 2012;32:6288–6294. doi: 10.1523/JNEUROSCI.4673-11.2012. PubMed DOI PMC
Nizri E., Irony-Tur-Sinai M., Faranesh N., Lavon I., Lavi E., Weinstock M., Brenner T. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J. Neuroimmunol. 2008;203:12–22. doi: 10.1016/j.jneuroim.2008.06.018. PubMed DOI
Chiou W.H., Kao C.L., Tsai J.C., Chang Y.M. Domino rh-catalyzed hydroformylation-double cyclization of o-amino cinnamyl derivatives: Applications to the formal total syntheses of physostigmine and physovenine. Chem. Commun. 2013;49:8232–8234. PubMed
Realini T. A history of glaucoma pharmacology. Optom. Vis. Sci. 2011;88:36–38. doi: 10.1097/OPX.0b013e3182058ead. PubMed DOI
Greig N.H., Becker R.E., Yu Q., Holloway H.W., Tweedie D., Luo W., Utsuki T., Ingram D.K., Maccecchini M.L., Rogers J.T., et al. From natural products to alzheimer experimental therapeutics, eserine based drugs as symptomatic and disease altering agents. Prog. Nutr. 2010;12:58–63.
Russo P., Frustaci A., del Bufalo A., Fini M., Cesario A. Multitarget drugs of plants origin acting on Alzheimer’s disease. Curr. Med. Chem. 2013;20:1686–1693. doi: 10.2174/0929867311320130008. PubMed DOI
Bitzinger D.I., Zausig Y.A., Paech C., Gruber M., Busse H., Sinner B., Graf B.M., Trabold B. Modulation of immune functions in polymorphonuclear neutrophils induced by physostigmine, but not neostigmine, independent of cholinergic neurons. Immunobiology. 2013;218:1049–1054. doi: 10.1016/j.imbio.2013.01.003. PubMed DOI
Peter C., Schmidt K., Hofer S., Stephan M., Martin E., Weigand M.A., Walther A. Effects of physostigmine on microcirculatory alterations during experimental endotoxemia. Shock. 2010;33:405–411. doi: 10.1097/SHK.0b013e3181b77e82. PubMed DOI
Kutsuna S., Tsuruta R., Fujita M., Todani M., Yagi T., Ogino Y., Igarashi M., Takahashi K., Izumi T., Kasaoka S., et al. Cholinergic agonist physostigmine suppresses excessivesuperoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in rats with forebrain ischemia/reperfusion. Brain Res. 2010;1313:242–249. doi: 10.1016/j.brainres.2009.11.077. PubMed DOI
Benatar M., Kaminski H. Medical and surgical treatment for ocular myasthenia. Cochrane Database Syst. Rev. 2012;12:CD005081. PubMed PMC
Chambers D., Paulden M., Paton F., Heirs M., Duffy S., Craig D., Hunter J., Wilson J., Sculpher M., Woolacott N. Sugammadex for the reversal of muscle relaxation in general anaesthesia: A systematic review and economic assessment. Health Technol. Assess. 2010;14:1–211. PubMed
Cossins J., Belaya K., Zoltowska K., Koneczny I., Maxwell S., Jacobson L., Leite M.I., Waters P., Vincent A., Beeson D. The search for new antigenic targets in myasthenia gravis. Ann. N. Y. Acad. Sci. 2012;1275:123–128. doi: 10.1111/j.1749-6632.2012.06833.x. PubMed DOI
Vyskocil F., Malomouzh A.I., Nikolsky E.E. Non-quantal acetylcholine release at the neuromuscular junction. Physiol. Res. 2009;58:763–784. PubMed
Walker S.M., Yaksh T.L. Neuraxial analgesia in neonates and infants: A review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth. Analg. 2012;115:638–662. PubMed PMC
Fisher D.M. Clinical pharmacology of neuromuscular blocking agents. Am. J. Health Syst. Pharm. 1999;56:S4–S9. PubMed
Yang L.P., Keam S.J. Sugammadex: A review of its use in anaesthetic practice. Drugs. 2009;69:919–942. doi: 10.2165/00003495-200969070-00008. PubMed DOI
Friedman A., Kaufer D., Shemer J., Hendler I., Soreq H., TurKaspa I. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat. Med. 1996;2:1382–1385. PubMed
Kalb A., von Haefen C., Sifringer M., Tegethoff A., Paeschke N., Kostova M., Feldheiser A., Spies C.D. Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One. 2013;8:e62679. PubMed PMC
Kalb A., von Haefen C., Sifringer M., Tegethoff A., Paeschke N., Kostova M., Feldheiser A., Spies C.D. Physostigmine and neostigmine reduce the increased expression of il-1beta in the hippocampus and cortex after surgery combined with lps-treatment. Eur. J. Neurol. 2012;19:756.
Pohanka M., Pavlis O. Neostigmine modulates tularemia progression in balb/c mice. Afr. J. Pharm. Pharmacol. 2012;6:1317–1322.
Sun L., Zhang G.F., Zhang X., Liu Q., Liu J.G., Su D.F., Liu C. Combined administration of anisodamine and neostigmine produces anti-shock effects: Involvement of alpha 7 nicotinic acetylcholine receptors. Acta Pharm. Sin. 2012;33:761–766. doi: 10.1038/aps.2012.26. PubMed DOI PMC
Kox M., Pompe J.C., Peters E., Vaneker M., van der Laak J.W., van der Hoeven J.G., Scheffer G.J., Hoedemaekers C.W., Pickkers P. Alpha 7 nicotinic acetylcholine receptor agonist gts-21 attenuates ventilator-induced tumour necrosis factor-alpha production and lung injury. Br. J. Anaesth. 2011;107:559–566. doi: 10.1093/bja/aer202. PubMed DOI
Caffeic Acid and Diseases-Mechanisms of Action
Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention