Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology

. 2012 ; 13 (2) : 2219-2238. [epub] 20120217

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid22408449

Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer's disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer's disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.

Zobrazit více v PubMed

Rand J.B.Acetylcholine WormBook 2007. 10.1895/wormbook.1.131.1Available online: http://www.wormbook.orgaccessed on 17 February 2012 PubMed DOI

Loewi O. Uberhumerole ubertragbarkeit der herznervenwirkung. I. Mitt. Pflugers Arch. 1921;189:239–242.

Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br. J. Pharmacol. 2008;154:1558–1571. PubMed PMC

Gabrielle P., Jeana M., Lorenza E.C. Cytosolic choline acetyltransferase binds specifically to cholinergic plasma membrane of rat brain synaptosomes to generate membrane-bound enzyme. Neurochem. Res. 2003;28:543–549. PubMed

Phillis J.W. Acetylcholine release from the central nervous system: A 50year retrospective. Crit. Rev. Neurobiol. 2005;17:161–217. PubMed

Llona I. Synaptic like microvesicles: Do they participate in regulated exocytosis? Neurochem. Int. 1995;27:219–226. PubMed

Dun A.R., Rickman C., Duncan R.R. The t-SNARE complex: A close up. Cell Mol. Neurobiol. 2010;30:1321–1326. PubMed

Snyder D.A., Kelly M.L., Woodbury D.J. SNARE complex regulation by phosphorylation. Cell Biochem. Biophys. 2006;45:111–123. PubMed

Rotundo R.L. Expression and localization of acetylcholinesterase at the neuromuscular junction. J. Neurocytol. 2003;32:743–766. PubMed

Sarter M., Parikh V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 2005;6:48–56. PubMed

Hall J.D., McCroskey L.M., Pincomb B.J., Hatheway C.L. Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxon from an infant with botulism. J. Clin. Microbiol. 1985;21:654–655. PubMed PMC

Aureli P., Fenicia L., Pasolini B., Gianfranceschi M., McCroskey J.M., Hatheway C.L. Two cases of type infant botulism caused by neurotoxigenic clostridium butyricum in Italy. J. Infect. Dis. 1986;154:207–211. PubMed

Lacy D.B., Tepp W., Cohen A.C., DasGupta B.R., Stevens R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998;5:898–902. PubMed

Singh B.R. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox. Res. 2006;9:73–92. PubMed

Hirota S.A. A quick guide to muscarinic acetylcholine receptors. BioPharm. J. 2001;5:6–8.

Felder C.C. Muscarinic acetylcholine receptors: Signal transduction through multiple effectors. FASEB J. 1995;9:619–625. PubMed

Tobin G., Giglio D., Lundgren O. Muscarinic receptor subtypes in the alimentary track. J. Physiol. Pharmacol. 2009;60:3–21. PubMed

Berstein G., Blank J.L., Smrcka A., Higashijima T., Sternweis P.C., Exton J.H., Ross E.M. Reconstitution of agonist-stimulated phoshpatidylinostiol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11 and phospholipase C-β1. J. Biol. Chem. 1992;267:8081–8088. PubMed

Falkenburger B.H., Jensen J.B., Hille B. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. J. Gen. Physiol. 2010;135:81–97. PubMed PMC

Parker E.M., Kameyama K., Higashijima T., Ross E.M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 1991;266:519–527. PubMed

Alfonzo M.J., de Becemberg I.L., de Villaroel S.S., de Herrerea V.N., Misle A.J., de Alfonzo R.G. Two opposite signal transducting mechanisms regulate a G-protein-coupled guanylyl cyclase. Arch. Biochem. Biophys. 1998;350:19–25. PubMed

Horng H.C., Chen F.C., Ho C.C., Kuo C.P., Wu C.T., Wong C.S. Bradycardia and hypotension refractory to ephedrine and atropine treatment: Severe autonomic dysfunction with abnormal heart rate variability. Acta Anaesthesiol. Taiwan. 2006;44:109–112. PubMed

Bryant S.M., Rhee J.W., Thompson T.M., Aks S.E. Pretreating rats with parenteral ophthalmic antimuscarinic agents decreases mortality from lethal organophosphate poisoning. Acad. Emerg. Med. 2007;14:370–372. PubMed

Nachum Z., Shupak A., Gordon C.R. Transdermal scopolamine for prevention of motion sickness: Clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 2006;45:543–566. PubMed

Bridges T.M., Lebois E.P., Hopkins C.R., Wood M.R., Jones C.K., Conn P.J., Lindsley C.W. The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect. 2010;23:229–240. PubMed PMC

Woolley M.L., Carter H.J., Gartlon J.E., Watson J.M., Dawson L.A. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 redceptor knockout mice. Eur. J. Pharmacol. 2009;603:147–149. PubMed

Sellin A.K., Shad M., Tamminga C. Muscarinic agonists for the treatment of cognition in schizophrenia. CNS Spectr. 2008;13:985–996. PubMed

Nissen C., Nofzinger E.A., Feige B., Waldheim B., Radosa M.P., Riemann D., Berger M. Differential effects of the muscarinic M1 receptor agonist RS-86 and the acetylcholine-esterase inhibitor donepezil on REM sleep regulation in healthy volunteers. Neuropsychopharmacology. 2006;31:1294–1300. PubMed

Winterer G. Why do patients with schizophrenia smoke. Curr. Opin. Psychiatry. 2010;23:112–119. PubMed

Williams J.M., Gandhi K.K. Use of caffeine and nicotine in people with schizophrenia. Curr. Drug Abuse Rev. 2008;1:155–161. PubMed

Rommelspacher H., Meier-Henco M., Smolka M., Kloft C. The levels of norharman are high enough after smoking to affect monoamineoxidase B in platelets. Eur. J. Pharmacol. 2002;441:115–125. PubMed

Nasiripourdori A., Taly V., Grutter T., Taly A. From toxins targeting ligand gated ion channels to therapeutic molecules. Toxins. 2011;3:260–293. PubMed PMC

Tracey K.J. Physiology and immunolgy of the cholinergic antiinflammatory pathway. J. Clin. Invest. 2007;117:289–296. PubMed PMC

Millar N.S. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem. Pharmacol. 2009;78:766–776. PubMed

Lohmann T.H., Torrao A.S., Britto L.R., Lindstrom J., Hamassaki-Britto D.E. A comparative non-radioactive in situ hybridization and immunohistochemical study of the distribution of alpha7 and alpha8 subunits of the nicotinic acetylcholine receptors in visual areas of the chick brain. Brain Res. 2000;852:463–469. PubMed

Unwin N. Refined Structure of the nicotinic acetylcholine receptor at 4 A resolution. J. Mol. Biol. 2005;346:967–989. PubMed

Albuquerque E.X., Pereira E.F., Alkondon M., Rogers S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009;89:73–120. PubMed PMC

Alkondon M., Pereira E.F.R., Cortes W.S., Maelicke A., Albuquerque E.X. Choline is a selective agonist of alpha7 nicotnic acetylcholine receptors in the rat brain neurons. Eur. J. Neurosci. 1997;9:2734–2742. PubMed

Zhou Y., Nelson M.E., Kuryatov A., Choi C., Cooper J., Lindstrom J. Human α4β2 acetylcholine receptors formed from linked subunits. J. Neurosci. 2003;23:9004–9015. PubMed PMC

Yang J.J., Wang Y.T., Cheng P.C., Kuo Y.J., Huang R.C. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J. Neurophysiol. 2010;103:1397–1409. PubMed

Corringer P.J., Bertrand S., Galzi J.L., Devillers-Thiery A., Changeux J.P., Bertrand D. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron. 1999;22:831–843. PubMed

Doley R., Kini R.M. Protein complexes in snake venom. Cell. Mol. Life Sci. 2009;66:2851–2871. PubMed PMC

Gurnaney H., Brown A., Litman R.S. Malignant hyperthermia and muscular dystrophies. Anesth. Anal. 2009;109:1043–1048. PubMed

Langeron O., Birenbaum A., Amour J. Airway management in trauma. Minerva Anestesiol. 2009;75:307–311. PubMed

Gatke M.R., Bundgaard J.R., Viby-Mogensen J. Two novel mutations in the BChE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia. Pharmacogenet. Genomics. 2007;17:995–999. PubMed

Leiser S.C., Bowlby M.R., Comery T.A., Dunlop J. A cog in cognition: How the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. 2009;122:302–311. PubMed

Soderman A., Mikkelsen J.D., West M.J., Christensen D.Z., Jensen M.S. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP (swe)/PS1ΔE9 mice. Neurosci. Lett. 2011;487:325–329. PubMed

Thomsen M.S., Hansen H.H., Timmerman D.B., Kikkelsen J.D. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Curr. Pharm. Des. 2010;16:323–343. PubMed

Feher A., Juhasz A., Rimanoczy A., Csibri E., Kalman J., Janka Z. Association between a genetic variant of the alpha-7 nicotinic acetylcholine receptor subunit and four types of dementia. Dement. Geriatr. Cogn. Disord. 2009;28:56–62. PubMed

Chu L.W., Ma E.S., Lam K.K., Chan M.F., Lee D.H. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord. 2005;19:106–112. PubMed

Tregellas J.R., Tanabe J., Rojas D.C., Shatti S., Olincy A., Johnson L., Martin L.F., Soti F., Kem W.R., Leonard S., et al. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol. Psychiatry. 2011;69:7–11. PubMed PMC

Livingston P.D., Srinivasan J., Kew J.N., Dawson L.A., Gotti C., Moretti M., Shoaib M., Wonnacott S. Alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur. J. Neurosci. 2009;29:539–550. PubMed

Martin L.F., Kem W.R., Freedman R. Alpha-7 nicotinic receptor agonists: Potential new candidates for the treatment of schizophrenia. Psychopharmacology. 2004;174:54–64. PubMed

Picciotto M.R., Caldarone B.J., Brunzell D.H., Zachariou V., Stevens T.R., King S.L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: Physiological and behavioral phenotypes and possible clinical inplications. Pharmacol. Ther. 2001;92:89–108. PubMed

Dziewczapolski G., Glogowski C.M., Masliah E., Heinemann S.F. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 2009;29:8805–8815. PubMed PMC

Lester H.A., Fonck C., Tapper A.R., McKinney S., Damaj M.I., Balogh S., Owens J., Wehner J.M., Collins A.C., Labarca C. Hypersensitive knockin mouse strains identify receptors and pathways for nicotine action. Curr. Opin. Drug Discov. Devel. 2003;6:633–639. PubMed

Tracey K.J. The inflammatory reflex. Nature. 2002;420:853–859. PubMed

Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. PubMed

Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9:418–428. PubMed PMC

Tracey K.J. Fat meets the cholinergic antiinflammatory pathway. J. Exp. Med. 2005;202:1071–1021. PubMed PMC

Casserly B., Baram M., Walsh P., Sucov A., Ward N.S., Levy M.M. Implementing a collaborative protocol in a sepsis intervention program: Lessons learned. Lung. 2011;189:11–19. PubMed

Babaev V.R., Patel M.B., Semenkovich C.F., Fazio S., Linton M.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J. Biol. Chem. 2000;275:26293–26299. PubMed

Herbein G., Gras G., Khan K.A., Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology. 2010;7:34:1–34:13. PubMed PMC

Pohanka M., Snopkova S., Havlickova K., Bostik P., Sinkorova Z., Fusek J., Kuca K., Pikula J. Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr. Med. Chem. 2011;18:539–551. PubMed

Parrish W.R., Gallowitsch-Puerta M., Czura C.J., Tracey K.J. Experimental therapeutic strategies for severe sepsis: Mediators and mechanisms. Ann. N. Y. Acad. Sci. 2008;1144:210–236. PubMed

Xiong J., Xue F.S., Yuan Y.J., Wang Q., Liao X., Wang W.L. Cholinergic anti-inflammatory pathway: A possible approach to protect against myocardial ischemia reperfusion injury. Chin. Med. J. (Engl.) 2010;123:2720–2726. PubMed

Zhou Y., Zuo X., Li Y., Wang Y., Zhao H., Xiao X. Nicotine inhibits tumor necrosis factor-alpha induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol. Int. 2012;32:97–104. PubMed

Azam L., Mcintosh J.M. Alpha-conotoxins as pharmacological probes of nicotinic acetylholine receptors. Acta Pharmacol. Sin. 2009;30:771–783. PubMed PMC

Millard E.L., Daly N.L., Craik D.J. Structure-activity relationships of alpha-conotoxins targeting neuronal nicotinic acetylcholine receptors. Eur. J. Biochem. 2004;271:2320–2326. PubMed

Favreau P., Krimm I., Le Gall F., Bobenrieth M.J., Lamthanh H., Bouet F., Servent D., Molgo J., Menez A., Letouneux Y., et al. Biochemical characterization and nuclear magnetic resonance structure of novel alpha-conotoxins isolated from the venom of conus consors. Biochemistry. 1999;38:6317–6326. PubMed

Hogg R.C., Miranda L.P., Craik D.J., Lewis R.J., Alewood P.F., Adams D.J. Single amino acid substitutions in alpha-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor. J. Biol. Chem. 1999;274:36559–36564. PubMed

Dutertre S., Nicke A., Lewis R.J. Beta2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylchline receptor. J. Biol. Chem. 2005;280:30460–30468. PubMed

Blanchfield J.T., Gallagher O.P., Cros C., Lewis R.J., Alewood P.F., Toth I. Oral absorption and in vivo biodistribution of alpha-conotoxin MII and a lipidic analogue. Biochem. Biophys. Res. Commun. 2007;361:97–102. PubMed

Whiteaker P., Mcintosh J.M., Luo S., Collins A.C., Marks M.J. 125I-alpha-conotoxin MII identifies a novel nicotinic acetylcholine receptor population in mouse brain. Mol. Pharmacol. 2000;57:913–925. PubMed

Arias H.R. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int. 2000;36:595–645. PubMed

McCann C.M., Bracamontes J., Steinbach J.H., Sanes J.R. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc. Natl. Acad. Sci. USA. 2006;103:5149–5154. PubMed PMC

Chang C.C. Looking back on the discovery of alpha-bungarotoxin. J. Biomed. Sci. 1999;6:368–375. PubMed

Hawgood B.J. Professor Chen-Yuan Lee, MD (1915–2001), pharmacologist: Snake venom research at the Institute of Pharmacology, National Taiwan University. Toxicon. 2002;40:1065–1072. PubMed

Chu N.S. Contribution of a snake venom toxin to myasthenia gravis: The discovery of alpha-bungarotoxin in Taiwan. J. Hist. Neurosci. 2005;14:138–148. PubMed

Aracava Y., Pereira E.F., Maelicke A., Albuquerque E.X. Memantine blocks alpha7* nicotnic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 2005;312:1195–1205. PubMed

Banerjee P., Samoriski G., Gupta S. Comments on “Memantine blocks alpha7* nicotnic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons”. J. Pharmacol. Exp. Ther. 2005;313:928–929. PubMed

Taly A., Corringer P.J., Guedin D., Lestage P., Changeux J.P. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 2009;8:733–750. PubMed

Santos M.D., Alkondon M., Pereira E.F., Aracava Y., Eisenberg H.M., Maelicke A., Albuquerque E.X. The nicotinic allosteric potentiating ligand galantamine facilitates synaptic transmission in the mammalian central nervous system. Mol. Pharmacol. 2002;61:1222–1234. PubMed

Schedel A., Thornton S., Schloss P., Kluter H., Bugert P. Human platelets express functional alpha 7-nicotinic acetylcholine receptors. Arterioscler. Thromb. Vasc. Biol. 2011;31:928–934. PubMed

Kassa J. Review of oximes in the antidotal treatment of poisoning by organophoshorus nerve agents. J. Toxicol. Clin. Toxicol. 2002;40:803–816. PubMed

Pohanka M., Jun D., Kuca K. Amperometric biosensor for evaluation of competitive cholinesterase inhibition by the reactivation HI-6. Anal. Lett. 2007;40:2351–2359.

Soukup O., Pohanka M., Tobin G., Jun D., Fusek J., Musilek K., Marek J., Kassa J., Kuca K. The effect of HI-6 on cholinesterases and on the cholinergic system of the rat bladder. Neuroendocrinol. Lett. 2008;29:759–762. PubMed

Pohanka M., Pavlis O., Pikula J., Treml F., Kuca K. Modulation of tularemia disease progress by the bisquaternary pyridinium oxime HI-6. Acta Vet. (Brno) 2010;79:443–448.

Pohanka M., Pejchal J., Horackova S., Kuca K., Bandouchova H., Damkova V., Pikula J. Modulation of ionising radiation generated oxidative stress by HI-6 (asoxime) in a laboratory rat model. Neuroendocrinol. Lett. 2010;31:62–68. PubMed

Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport system. NeuroRx. 2005;2:54–62. PubMed PMC

Liu X., Testa B., Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011;28:962–977. PubMed

Ohtsuki S., Terasaki T. Contribution of carrier-mediated transport system to the blood-brain barrier as a supporting and protecting interface for the brain, importance for CNS drug discovery and development. Pharm. Res. 2007;24:1745–1758. PubMed

Wallace T.L., Callahan P.M., Tehim A., Bertrand D., Tombaugh G., Wang S., Xie W., Rowe W.B., Ong V., Graham E., et al. RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther. 2011;336:242–253. PubMed

Chiron C., Haydar S.N., Aschmies S., Bothmann H., Castaldo C., Cocconcelli G., Comery T.A., Di L., Dunlop J., Lock T., et al. Novel alpha-7 nicotinic acetylcholine receptor agonists containing a urea moiety: Identification and characterization of the potent, selective, and orally efficacious agonist 1-[6-(4-fluorophenyl)pyridin-3-yl]-3-(4-piperidin-1-ylbutyl) urea (SEN34625/WYE-103914) J. Med. Chem. 2010;53:4379–7389. PubMed

Roncarati R., Scali C., Comery T.A., Grauer S.M., Aschmi S., Bothmann H., Jow B., Kowal D., Gianfriddo M., Kelley C., et al. Procognitive and neuroprotective activity of novel alpha 7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J. Pharmacol. Exp. Ther. 2009;329:459–468. PubMed

Malysz J., Anderson D.J., Gronlien J.H., Ji J., Bunnelle W.H., Hakerud M., Thorin-Hagene K., Ween H., Helfrich R., Hu M., et al. In vitro phramacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107. J. Pharmacol. Exp. Ther. 2010;334:863–874. PubMed

Asenjo Lobos C., Komossa K., Rummel-Kluge C., Hunger H., Schmid F., Schwarz S., Leucht S. Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. 2010;83 doi: 10.1002/14651858.CD006633.. PubMed DOI PMC

Bertrand D., Gopalakrishnan M. Allosteric modulation of nicotinic acetlycholine receptors. Biochem. Pharmacol. 2007;74:1155–1163. PubMed

Kalappa B.I., Gusev A.G., Uteshev V.V. Activation of functional α7-containing nAChRs in hippocampal CA1 pyrmidal neurons by physiologica levels of choline in the presence of PNU-120596. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013964.. PubMed DOI PMC

Lippiello P.M., Beaver J.S., Gatto G.J., James J.W., Jordan K.G., Traina V.M., Xie J., Benchrif M. TC-5214 (S-(+)-mecamylamine): A neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci. Ther. 2008;14:266–277. PubMed PMC

Sydserff S., Sutton E.J., Song D., Quirk M.C., Maciag C., Li C., Jonak G., Gurley D., Gordon J.C., Christian E.P., et al. Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem. Pharmacol. 2009;78:880–888. PubMed

Hauser T.A., Kucinski A., Jordan K.G., Gatto G.J., Wersinger S.R., Hesse R.A., Stachowiak E.K., Stachowiak M.K., Papke R.L., Lippiello P.M., et al. TC-5619: An alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem. Pharmacol. 2009;78:803–812. PubMed PMC

Jonnala R.R., Grahama J.H., Terry A.V., Beach J.W., Young J.A., Buccafusco J.J. Relative level of cytoprotection produced by analogs of choline and the role of alpha 7-nicotinic acetylcholine receptors. Synapse. 2003;47:262–269. PubMed

Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–223. PubMed

Minutoli L., Squadrito F., Nicotina P.A., Giuliani D., Ottani A., Polito F., Bitto A., Irrera N., Guzzo G., Spaccapelo L., et al. Melanocortin 4 receptor stimulation decreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatory pathway. Crit. Care Med. 2011;39:1089–1096. PubMed

Rosas-Ballina M., Tracey K.J. Cholinergic control of inflammation. J. Intern. Med. 2009;265:663–679. PubMed PMC

Rosas-Ballina M., Goldstein R.S., Gallowitsch-Puerta M., Yang L., Valdes-Ferrer S.I., Patel N.B., Chavan S., Al-Abed Y., Yang H., Tracey K.J. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med. 2009;15:195–202. PubMed PMC

Pavlov V.A., Ochani M., Yang L.H., Gallowitsch-Puerta M., Ochani K., Lin X., Levi J., Parrish W.R., Rosas-Ballina M., Czura C.J., et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. 2007;35:1139–1144. PubMed

Kox M., Pompe J.C., Peters E., VAneker M., van der Laak J.W., van der Hoeven J.G., Scheffer G.J., Hoedemaekers C.W., Pickkers P. α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br. J. Anaesth. 2011;107:559–566. PubMed

Tregellas J.R., Tanabe J., Rojas D.C., Shatti S., Olincy A., Johnson L., Martin L.F., Soti F., Kem W.R., Leonard S., Freedman R. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol. Psychiatry. 2011;69:7–11. PubMed PMC

Bowman G., Bonneau R.H., Chinchilli V.M., Tracey K.J., Cockroft K.M. A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocit. Care. 2006;5:222–229. PubMed

Oke S.L., Tracey K.J. From CNI-1493 to the immunological homunculus: Physiology of the inflammatory reflex. J. Leukoc. Biol. 2008;83:512–517. PubMed

Bacher M., Dodel R., Aljabari B., Keyvani K., Marambaud P., Kayed R., Glabe C., Goertz N., Hoppmann A., Sachser N., et al. CNI-1493 inhibits Abeta production, and cognitive deterioration in an animal model of Alzheimer’s disease. J. Exp. Med. 2008;205:1593–1599. PubMed PMC

Oettinger C.W., D’Souza M.J. Synergism in survival to endotoxic shock in rats given microencapsulated CNI-1493 and antisense oligomers to NF-kappaB. J. Microencapsul. 2010;27:372–376. PubMed

Dotan I., RAchmilewitz D., Schreiber S., Eliakim R., van der Woude C.J., Kornbluth A., Buchman A.L., Bar-Meir S., Bokemeyer B., Goldin E., et al. A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut. 2010;59:760–766. PubMed

The F.O., Boeckxstaens G.E., Snoek S.A., Cash J.L., Bennink R., Larosa G.J., van den Wijngaard R.M., Greaves D.R., de Jonge W.J. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology. 2007;133:1219–1228. PubMed

Van Kampen M., Selbach K., Schneider R., Schiegel E., Boess F., Schreiber R. AR-R 17779 improves social recognition in rats by activation of nicotinic alpha7 receptors. Psychopharmacology. 2004;172:375–383. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...