Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22408449
PubMed Central
PMC3292018
DOI
10.3390/ijms13022219
PII: ijms13022219
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, agonist, antagonist, cholinergic anti-inflammatory pathway, cognitive disorder, inflammation, schizophrenia,
- MeSH
- acetylcholin farmakologie MeSH
- agonisté excitačních aminokyselin * farmakologie toxicita MeSH
- alfa7 nikotinové acetylcholinové receptory agonisté antagonisté a inhibitory fyziologie MeSH
- antagonisté excitačních aminokyselin * farmakologie toxicita MeSH
- antiflogistika farmakologie terapeutické užití MeSH
- cílená molekulární terapie * MeSH
- lidé MeSH
- memantin farmakologie terapeutické užití MeSH
- mozek účinky léků metabolismus MeSH
- oximy farmakologie terapeutické užití MeSH
- pyridinové sloučeniny farmakologie terapeutické užití MeSH
- signální transdukce účinky léků MeSH
- zánět metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- acetylcholin MeSH
- agonisté excitačních aminokyselin * MeSH
- alfa7 nikotinové acetylcholinové receptory MeSH
- antagonisté excitačních aminokyselin * MeSH
- antiflogistika MeSH
- asoxime chloride MeSH Prohlížeč
- memantin MeSH
- oximy MeSH
- pyridinové sloučeniny MeSH
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer's disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer's disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.
Zobrazit více v PubMed
Rand J.B.Acetylcholine WormBook 2007. 10.1895/wormbook.1.131.1Available online: http://www.wormbook.orgaccessed on 17 February 2012 PubMed DOI
Loewi O. Uberhumerole ubertragbarkeit der herznervenwirkung. I. Mitt. Pflugers Arch. 1921;189:239–242.
Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br. J. Pharmacol. 2008;154:1558–1571. PubMed PMC
Gabrielle P., Jeana M., Lorenza E.C. Cytosolic choline acetyltransferase binds specifically to cholinergic plasma membrane of rat brain synaptosomes to generate membrane-bound enzyme. Neurochem. Res. 2003;28:543–549. PubMed
Phillis J.W. Acetylcholine release from the central nervous system: A 50year retrospective. Crit. Rev. Neurobiol. 2005;17:161–217. PubMed
Llona I. Synaptic like microvesicles: Do they participate in regulated exocytosis? Neurochem. Int. 1995;27:219–226. PubMed
Dun A.R., Rickman C., Duncan R.R. The t-SNARE complex: A close up. Cell Mol. Neurobiol. 2010;30:1321–1326. PubMed
Snyder D.A., Kelly M.L., Woodbury D.J. SNARE complex regulation by phosphorylation. Cell Biochem. Biophys. 2006;45:111–123. PubMed
Rotundo R.L. Expression and localization of acetylcholinesterase at the neuromuscular junction. J. Neurocytol. 2003;32:743–766. PubMed
Sarter M., Parikh V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 2005;6:48–56. PubMed
Hall J.D., McCroskey L.M., Pincomb B.J., Hatheway C.L. Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxon from an infant with botulism. J. Clin. Microbiol. 1985;21:654–655. PubMed PMC
Aureli P., Fenicia L., Pasolini B., Gianfranceschi M., McCroskey J.M., Hatheway C.L. Two cases of type infant botulism caused by neurotoxigenic clostridium butyricum in Italy. J. Infect. Dis. 1986;154:207–211. PubMed
Lacy D.B., Tepp W., Cohen A.C., DasGupta B.R., Stevens R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998;5:898–902. PubMed
Singh B.R. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox. Res. 2006;9:73–92. PubMed
Hirota S.A. A quick guide to muscarinic acetylcholine receptors. BioPharm. J. 2001;5:6–8.
Felder C.C. Muscarinic acetylcholine receptors: Signal transduction through multiple effectors. FASEB J. 1995;9:619–625. PubMed
Tobin G., Giglio D., Lundgren O. Muscarinic receptor subtypes in the alimentary track. J. Physiol. Pharmacol. 2009;60:3–21. PubMed
Berstein G., Blank J.L., Smrcka A., Higashijima T., Sternweis P.C., Exton J.H., Ross E.M. Reconstitution of agonist-stimulated phoshpatidylinostiol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11 and phospholipase C-β1. J. Biol. Chem. 1992;267:8081–8088. PubMed
Falkenburger B.H., Jensen J.B., Hille B. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. J. Gen. Physiol. 2010;135:81–97. PubMed PMC
Parker E.M., Kameyama K., Higashijima T., Ross E.M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 1991;266:519–527. PubMed
Alfonzo M.J., de Becemberg I.L., de Villaroel S.S., de Herrerea V.N., Misle A.J., de Alfonzo R.G. Two opposite signal transducting mechanisms regulate a G-protein-coupled guanylyl cyclase. Arch. Biochem. Biophys. 1998;350:19–25. PubMed
Horng H.C., Chen F.C., Ho C.C., Kuo C.P., Wu C.T., Wong C.S. Bradycardia and hypotension refractory to ephedrine and atropine treatment: Severe autonomic dysfunction with abnormal heart rate variability. Acta Anaesthesiol. Taiwan. 2006;44:109–112. PubMed
Bryant S.M., Rhee J.W., Thompson T.M., Aks S.E. Pretreating rats with parenteral ophthalmic antimuscarinic agents decreases mortality from lethal organophosphate poisoning. Acad. Emerg. Med. 2007;14:370–372. PubMed
Nachum Z., Shupak A., Gordon C.R. Transdermal scopolamine for prevention of motion sickness: Clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 2006;45:543–566. PubMed
Bridges T.M., Lebois E.P., Hopkins C.R., Wood M.R., Jones C.K., Conn P.J., Lindsley C.W. The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect. 2010;23:229–240. PubMed PMC
Woolley M.L., Carter H.J., Gartlon J.E., Watson J.M., Dawson L.A. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 redceptor knockout mice. Eur. J. Pharmacol. 2009;603:147–149. PubMed
Sellin A.K., Shad M., Tamminga C. Muscarinic agonists for the treatment of cognition in schizophrenia. CNS Spectr. 2008;13:985–996. PubMed
Nissen C., Nofzinger E.A., Feige B., Waldheim B., Radosa M.P., Riemann D., Berger M. Differential effects of the muscarinic M1 receptor agonist RS-86 and the acetylcholine-esterase inhibitor donepezil on REM sleep regulation in healthy volunteers. Neuropsychopharmacology. 2006;31:1294–1300. PubMed
Winterer G. Why do patients with schizophrenia smoke. Curr. Opin. Psychiatry. 2010;23:112–119. PubMed
Williams J.M., Gandhi K.K. Use of caffeine and nicotine in people with schizophrenia. Curr. Drug Abuse Rev. 2008;1:155–161. PubMed
Rommelspacher H., Meier-Henco M., Smolka M., Kloft C. The levels of norharman are high enough after smoking to affect monoamineoxidase B in platelets. Eur. J. Pharmacol. 2002;441:115–125. PubMed
Nasiripourdori A., Taly V., Grutter T., Taly A. From toxins targeting ligand gated ion channels to therapeutic molecules. Toxins. 2011;3:260–293. PubMed PMC
Tracey K.J. Physiology and immunolgy of the cholinergic antiinflammatory pathway. J. Clin. Invest. 2007;117:289–296. PubMed PMC
Millar N.S. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem. Pharmacol. 2009;78:766–776. PubMed
Lohmann T.H., Torrao A.S., Britto L.R., Lindstrom J., Hamassaki-Britto D.E. A comparative non-radioactive in situ hybridization and immunohistochemical study of the distribution of alpha7 and alpha8 subunits of the nicotinic acetylcholine receptors in visual areas of the chick brain. Brain Res. 2000;852:463–469. PubMed
Unwin N. Refined Structure of the nicotinic acetylcholine receptor at 4 A resolution. J. Mol. Biol. 2005;346:967–989. PubMed
Albuquerque E.X., Pereira E.F., Alkondon M., Rogers S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009;89:73–120. PubMed PMC
Alkondon M., Pereira E.F.R., Cortes W.S., Maelicke A., Albuquerque E.X. Choline is a selective agonist of alpha7 nicotnic acetylcholine receptors in the rat brain neurons. Eur. J. Neurosci. 1997;9:2734–2742. PubMed
Zhou Y., Nelson M.E., Kuryatov A., Choi C., Cooper J., Lindstrom J. Human α4β2 acetylcholine receptors formed from linked subunits. J. Neurosci. 2003;23:9004–9015. PubMed PMC
Yang J.J., Wang Y.T., Cheng P.C., Kuo Y.J., Huang R.C. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J. Neurophysiol. 2010;103:1397–1409. PubMed
Corringer P.J., Bertrand S., Galzi J.L., Devillers-Thiery A., Changeux J.P., Bertrand D. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron. 1999;22:831–843. PubMed
Doley R., Kini R.M. Protein complexes in snake venom. Cell. Mol. Life Sci. 2009;66:2851–2871. PubMed PMC
Gurnaney H., Brown A., Litman R.S. Malignant hyperthermia and muscular dystrophies. Anesth. Anal. 2009;109:1043–1048. PubMed
Langeron O., Birenbaum A., Amour J. Airway management in trauma. Minerva Anestesiol. 2009;75:307–311. PubMed
Gatke M.R., Bundgaard J.R., Viby-Mogensen J. Two novel mutations in the BChE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia. Pharmacogenet. Genomics. 2007;17:995–999. PubMed
Leiser S.C., Bowlby M.R., Comery T.A., Dunlop J. A cog in cognition: How the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. 2009;122:302–311. PubMed
Soderman A., Mikkelsen J.D., West M.J., Christensen D.Z., Jensen M.S. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP (swe)/PS1ΔE9 mice. Neurosci. Lett. 2011;487:325–329. PubMed
Thomsen M.S., Hansen H.H., Timmerman D.B., Kikkelsen J.D. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Curr. Pharm. Des. 2010;16:323–343. PubMed
Feher A., Juhasz A., Rimanoczy A., Csibri E., Kalman J., Janka Z. Association between a genetic variant of the alpha-7 nicotinic acetylcholine receptor subunit and four types of dementia. Dement. Geriatr. Cogn. Disord. 2009;28:56–62. PubMed
Chu L.W., Ma E.S., Lam K.K., Chan M.F., Lee D.H. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord. 2005;19:106–112. PubMed
Tregellas J.R., Tanabe J., Rojas D.C., Shatti S., Olincy A., Johnson L., Martin L.F., Soti F., Kem W.R., Leonard S., et al. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol. Psychiatry. 2011;69:7–11. PubMed PMC
Livingston P.D., Srinivasan J., Kew J.N., Dawson L.A., Gotti C., Moretti M., Shoaib M., Wonnacott S. Alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur. J. Neurosci. 2009;29:539–550. PubMed
Martin L.F., Kem W.R., Freedman R. Alpha-7 nicotinic receptor agonists: Potential new candidates for the treatment of schizophrenia. Psychopharmacology. 2004;174:54–64. PubMed
Picciotto M.R., Caldarone B.J., Brunzell D.H., Zachariou V., Stevens T.R., King S.L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: Physiological and behavioral phenotypes and possible clinical inplications. Pharmacol. Ther. 2001;92:89–108. PubMed
Dziewczapolski G., Glogowski C.M., Masliah E., Heinemann S.F. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 2009;29:8805–8815. PubMed PMC
Lester H.A., Fonck C., Tapper A.R., McKinney S., Damaj M.I., Balogh S., Owens J., Wehner J.M., Collins A.C., Labarca C. Hypersensitive knockin mouse strains identify receptors and pathways for nicotine action. Curr. Opin. Drug Discov. Devel. 2003;6:633–639. PubMed
Tracey K.J. The inflammatory reflex. Nature. 2002;420:853–859. PubMed
Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. PubMed
Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009;9:418–428. PubMed PMC
Tracey K.J. Fat meets the cholinergic antiinflammatory pathway. J. Exp. Med. 2005;202:1071–1021. PubMed PMC
Casserly B., Baram M., Walsh P., Sucov A., Ward N.S., Levy M.M. Implementing a collaborative protocol in a sepsis intervention program: Lessons learned. Lung. 2011;189:11–19. PubMed
Babaev V.R., Patel M.B., Semenkovich C.F., Fazio S., Linton M.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J. Biol. Chem. 2000;275:26293–26299. PubMed
Herbein G., Gras G., Khan K.A., Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology. 2010;7:34:1–34:13. PubMed PMC
Pohanka M., Snopkova S., Havlickova K., Bostik P., Sinkorova Z., Fusek J., Kuca K., Pikula J. Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr. Med. Chem. 2011;18:539–551. PubMed
Parrish W.R., Gallowitsch-Puerta M., Czura C.J., Tracey K.J. Experimental therapeutic strategies for severe sepsis: Mediators and mechanisms. Ann. N. Y. Acad. Sci. 2008;1144:210–236. PubMed
Xiong J., Xue F.S., Yuan Y.J., Wang Q., Liao X., Wang W.L. Cholinergic anti-inflammatory pathway: A possible approach to protect against myocardial ischemia reperfusion injury. Chin. Med. J. (Engl.) 2010;123:2720–2726. PubMed
Zhou Y., Zuo X., Li Y., Wang Y., Zhao H., Xiao X. Nicotine inhibits tumor necrosis factor-alpha induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol. Int. 2012;32:97–104. PubMed
Azam L., Mcintosh J.M. Alpha-conotoxins as pharmacological probes of nicotinic acetylholine receptors. Acta Pharmacol. Sin. 2009;30:771–783. PubMed PMC
Millard E.L., Daly N.L., Craik D.J. Structure-activity relationships of alpha-conotoxins targeting neuronal nicotinic acetylcholine receptors. Eur. J. Biochem. 2004;271:2320–2326. PubMed
Favreau P., Krimm I., Le Gall F., Bobenrieth M.J., Lamthanh H., Bouet F., Servent D., Molgo J., Menez A., Letouneux Y., et al. Biochemical characterization and nuclear magnetic resonance structure of novel alpha-conotoxins isolated from the venom of conus consors. Biochemistry. 1999;38:6317–6326. PubMed
Hogg R.C., Miranda L.P., Craik D.J., Lewis R.J., Alewood P.F., Adams D.J. Single amino acid substitutions in alpha-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor. J. Biol. Chem. 1999;274:36559–36564. PubMed
Dutertre S., Nicke A., Lewis R.J. Beta2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylchline receptor. J. Biol. Chem. 2005;280:30460–30468. PubMed
Blanchfield J.T., Gallagher O.P., Cros C., Lewis R.J., Alewood P.F., Toth I. Oral absorption and in vivo biodistribution of alpha-conotoxin MII and a lipidic analogue. Biochem. Biophys. Res. Commun. 2007;361:97–102. PubMed
Whiteaker P., Mcintosh J.M., Luo S., Collins A.C., Marks M.J. 125I-alpha-conotoxin MII identifies a novel nicotinic acetylcholine receptor population in mouse brain. Mol. Pharmacol. 2000;57:913–925. PubMed
Arias H.R. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int. 2000;36:595–645. PubMed
McCann C.M., Bracamontes J., Steinbach J.H., Sanes J.R. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc. Natl. Acad. Sci. USA. 2006;103:5149–5154. PubMed PMC
Chang C.C. Looking back on the discovery of alpha-bungarotoxin. J. Biomed. Sci. 1999;6:368–375. PubMed
Hawgood B.J. Professor Chen-Yuan Lee, MD (1915–2001), pharmacologist: Snake venom research at the Institute of Pharmacology, National Taiwan University. Toxicon. 2002;40:1065–1072. PubMed
Chu N.S. Contribution of a snake venom toxin to myasthenia gravis: The discovery of alpha-bungarotoxin in Taiwan. J. Hist. Neurosci. 2005;14:138–148. PubMed
Aracava Y., Pereira E.F., Maelicke A., Albuquerque E.X. Memantine blocks alpha7* nicotnic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 2005;312:1195–1205. PubMed
Banerjee P., Samoriski G., Gupta S. Comments on “Memantine blocks alpha7* nicotnic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons”. J. Pharmacol. Exp. Ther. 2005;313:928–929. PubMed
Taly A., Corringer P.J., Guedin D., Lestage P., Changeux J.P. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 2009;8:733–750. PubMed
Santos M.D., Alkondon M., Pereira E.F., Aracava Y., Eisenberg H.M., Maelicke A., Albuquerque E.X. The nicotinic allosteric potentiating ligand galantamine facilitates synaptic transmission in the mammalian central nervous system. Mol. Pharmacol. 2002;61:1222–1234. PubMed
Schedel A., Thornton S., Schloss P., Kluter H., Bugert P. Human platelets express functional alpha 7-nicotinic acetylcholine receptors. Arterioscler. Thromb. Vasc. Biol. 2011;31:928–934. PubMed
Kassa J. Review of oximes in the antidotal treatment of poisoning by organophoshorus nerve agents. J. Toxicol. Clin. Toxicol. 2002;40:803–816. PubMed
Pohanka M., Jun D., Kuca K. Amperometric biosensor for evaluation of competitive cholinesterase inhibition by the reactivation HI-6. Anal. Lett. 2007;40:2351–2359.
Soukup O., Pohanka M., Tobin G., Jun D., Fusek J., Musilek K., Marek J., Kassa J., Kuca K. The effect of HI-6 on cholinesterases and on the cholinergic system of the rat bladder. Neuroendocrinol. Lett. 2008;29:759–762. PubMed
Pohanka M., Pavlis O., Pikula J., Treml F., Kuca K. Modulation of tularemia disease progress by the bisquaternary pyridinium oxime HI-6. Acta Vet. (Brno) 2010;79:443–448.
Pohanka M., Pejchal J., Horackova S., Kuca K., Bandouchova H., Damkova V., Pikula J. Modulation of ionising radiation generated oxidative stress by HI-6 (asoxime) in a laboratory rat model. Neuroendocrinol. Lett. 2010;31:62–68. PubMed
Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport system. NeuroRx. 2005;2:54–62. PubMed PMC
Liu X., Testa B., Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011;28:962–977. PubMed
Ohtsuki S., Terasaki T. Contribution of carrier-mediated transport system to the blood-brain barrier as a supporting and protecting interface for the brain, importance for CNS drug discovery and development. Pharm. Res. 2007;24:1745–1758. PubMed
Wallace T.L., Callahan P.M., Tehim A., Bertrand D., Tombaugh G., Wang S., Xie W., Rowe W.B., Ong V., Graham E., et al. RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther. 2011;336:242–253. PubMed
Chiron C., Haydar S.N., Aschmies S., Bothmann H., Castaldo C., Cocconcelli G., Comery T.A., Di L., Dunlop J., Lock T., et al. Novel alpha-7 nicotinic acetylcholine receptor agonists containing a urea moiety: Identification and characterization of the potent, selective, and orally efficacious agonist 1-[6-(4-fluorophenyl)pyridin-3-yl]-3-(4-piperidin-1-ylbutyl) urea (SEN34625/WYE-103914) J. Med. Chem. 2010;53:4379–7389. PubMed
Roncarati R., Scali C., Comery T.A., Grauer S.M., Aschmi S., Bothmann H., Jow B., Kowal D., Gianfriddo M., Kelley C., et al. Procognitive and neuroprotective activity of novel alpha 7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J. Pharmacol. Exp. Ther. 2009;329:459–468. PubMed
Malysz J., Anderson D.J., Gronlien J.H., Ji J., Bunnelle W.H., Hakerud M., Thorin-Hagene K., Ween H., Helfrich R., Hu M., et al. In vitro phramacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107. J. Pharmacol. Exp. Ther. 2010;334:863–874. PubMed
Asenjo Lobos C., Komossa K., Rummel-Kluge C., Hunger H., Schmid F., Schwarz S., Leucht S. Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst. Rev. 2010;83 doi: 10.1002/14651858.CD006633.. PubMed DOI PMC
Bertrand D., Gopalakrishnan M. Allosteric modulation of nicotinic acetlycholine receptors. Biochem. Pharmacol. 2007;74:1155–1163. PubMed
Kalappa B.I., Gusev A.G., Uteshev V.V. Activation of functional α7-containing nAChRs in hippocampal CA1 pyrmidal neurons by physiologica levels of choline in the presence of PNU-120596. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013964.. PubMed DOI PMC
Lippiello P.M., Beaver J.S., Gatto G.J., James J.W., Jordan K.G., Traina V.M., Xie J., Benchrif M. TC-5214 (S-(+)-mecamylamine): A neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci. Ther. 2008;14:266–277. PubMed PMC
Sydserff S., Sutton E.J., Song D., Quirk M.C., Maciag C., Li C., Jonak G., Gurley D., Gordon J.C., Christian E.P., et al. Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem. Pharmacol. 2009;78:880–888. PubMed
Hauser T.A., Kucinski A., Jordan K.G., Gatto G.J., Wersinger S.R., Hesse R.A., Stachowiak E.K., Stachowiak M.K., Papke R.L., Lippiello P.M., et al. TC-5619: An alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem. Pharmacol. 2009;78:803–812. PubMed PMC
Jonnala R.R., Grahama J.H., Terry A.V., Beach J.W., Young J.A., Buccafusco J.J. Relative level of cytoprotection produced by analogs of choline and the role of alpha 7-nicotinic acetylcholine receptors. Synapse. 2003;47:262–269. PubMed
Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc. 2011;155:219–223. PubMed
Minutoli L., Squadrito F., Nicotina P.A., Giuliani D., Ottani A., Polito F., Bitto A., Irrera N., Guzzo G., Spaccapelo L., et al. Melanocortin 4 receptor stimulation decreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatory pathway. Crit. Care Med. 2011;39:1089–1096. PubMed
Rosas-Ballina M., Tracey K.J. Cholinergic control of inflammation. J. Intern. Med. 2009;265:663–679. PubMed PMC
Rosas-Ballina M., Goldstein R.S., Gallowitsch-Puerta M., Yang L., Valdes-Ferrer S.I., Patel N.B., Chavan S., Al-Abed Y., Yang H., Tracey K.J. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med. 2009;15:195–202. PubMed PMC
Pavlov V.A., Ochani M., Yang L.H., Gallowitsch-Puerta M., Ochani K., Lin X., Levi J., Parrish W.R., Rosas-Ballina M., Czura C.J., et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. 2007;35:1139–1144. PubMed
Kox M., Pompe J.C., Peters E., VAneker M., van der Laak J.W., van der Hoeven J.G., Scheffer G.J., Hoedemaekers C.W., Pickkers P. α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br. J. Anaesth. 2011;107:559–566. PubMed
Tregellas J.R., Tanabe J., Rojas D.C., Shatti S., Olincy A., Johnson L., Martin L.F., Soti F., Kem W.R., Leonard S., Freedman R. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol. Psychiatry. 2011;69:7–11. PubMed PMC
Bowman G., Bonneau R.H., Chinchilli V.M., Tracey K.J., Cockroft K.M. A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocit. Care. 2006;5:222–229. PubMed
Oke S.L., Tracey K.J. From CNI-1493 to the immunological homunculus: Physiology of the inflammatory reflex. J. Leukoc. Biol. 2008;83:512–517. PubMed
Bacher M., Dodel R., Aljabari B., Keyvani K., Marambaud P., Kayed R., Glabe C., Goertz N., Hoppmann A., Sachser N., et al. CNI-1493 inhibits Abeta production, and cognitive deterioration in an animal model of Alzheimer’s disease. J. Exp. Med. 2008;205:1593–1599. PubMed PMC
Oettinger C.W., D’Souza M.J. Synergism in survival to endotoxic shock in rats given microencapsulated CNI-1493 and antisense oligomers to NF-kappaB. J. Microencapsul. 2010;27:372–376. PubMed
Dotan I., RAchmilewitz D., Schreiber S., Eliakim R., van der Woude C.J., Kornbluth A., Buchman A.L., Bar-Meir S., Bokemeyer B., Goldin E., et al. A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut. 2010;59:760–766. PubMed
The F.O., Boeckxstaens G.E., Snoek S.A., Cash J.L., Bennink R., Larosa G.J., van den Wijngaard R.M., Greaves D.R., de Jonge W.J. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology. 2007;133:1219–1228. PubMed
Van Kampen M., Selbach K., Schneider R., Schiegel E., Boess F., Schreiber R. AR-R 17779 improves social recognition in rats by activation of nicotinic alpha7 receptors. Psychopharmacology. 2004;172:375–383. PubMed
A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity
Postponed effect of neostigmine on oxidative homeostasis
Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity
Sulfur mustard induced oxidative stress and its alteration using asoxime (HI-6)
Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase
Galantamine effect on tularemia pathogenesis in a BALB/c mouse model