Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19025587
PubMed Central
PMC2613151
DOI
10.1186/1471-2229-8-117
PII: 1471-2229-8-117
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- DNA bakterií metabolismus MeSH
- fotoperioda MeSH
- gibereliny farmakologie MeSH
- hlízy rostlin účinky léků genetika metabolismus účinky záření MeSH
- inzerční mutageneze MeSH
- listy rostlin účinky léků metabolismus účinky záření MeSH
- metabolismus sacharidů účinky léků účinky záření MeSH
- mutace genetika MeSH
- nekódující RNA genetika MeSH
- proteom metabolismus MeSH
- půda MeSH
- regulace genové exprese u rostlin účinky léků účinky záření MeSH
- ribozomální DNA genetika MeSH
- rostlinné geny MeSH
- sacharosa farmakologie MeSH
- škrob metabolismus MeSH
- Solanum tuberosum účinky léků genetika metabolismus účinky záření MeSH
- stonky rostlin účinky léků metabolismus účinky záření MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- gibberellic acid MeSH Prohlížeč
- gibereliny MeSH
- nekódující RNA MeSH
- proteom MeSH
- půda MeSH
- ribozomální DNA MeSH
- sacharosa MeSH
- škrob MeSH
- T-DNA MeSH Prohlížeč
BACKGROUND: Tuberization in potato (Solanum tuberosum L.) represents a morphogenetic transition of stolon growth to tuber formation, which is under complex environmental and endogenous regulation. In the present work, we studied the regulatory mechanisms and the role of different morphogenetic factors in a newly isolated potato mutant, which exhibited spontaneous tuberization (ST). The ST mutant was characterized in detail at morphological, physiological and biochemical levels. RESULTS: Tuberization of the ST mutant grown in the soil was photoperiod-insensitive; predominantly sessile tubers formed directly from axillary buds even under continuous light. Single-node cuttings of the ST mutant cultured in vitro frequently formed tubers or basal tuber-like swellings instead of normal shoots under conditions routinely used for shoot propagation. The tuberization response of ST cuttings under light was dependent on sucrose, the concentration of which had to exceed certain threshold that inversely correlated with irradiance. Gibberellic acid prevented tuberization of ST cuttings, but failed to restore normal shoot phenotype and caused severe malformations. Carbohydrate analysis showed increased levels of both soluble sugars and starch in ST plants, with altered carbohydrate partitioning and metabolism. Comparative proteomic analysis revealed only a few differences between ST- and wild-type plants, primary amongst which seemed to be the absence of an isoform of manganese-stabilizing protein, a key subunit of photosystem II. CONCLUSION: ST mutant exhibits complex developmental and phenotypic modifications, with features that are typical for plants strongly induced to tuberize. These changes are likely to be related to altered regulation of photosynthesis and carbohydrate metabolism rather than impaired transduction of inhibitory gibberellin or photoperiod-based signals. The effect of gibberellins on tuberization of ST mutant suggests that gibberellins inhibit tuberization downstream of the inductive effects of sucrose and other positive factors.
Zobrazit více v PubMed
Amador V, Monte E, Garcia-Martinez JL, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell. 2001;106:343–354. doi: 10.1016/S0092-8674(01)00445-7. PubMed DOI
Banerjee AK, Chatterjee M, Yu YY, Suh SG, Miller WA, Hannapel DJ. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell. 2006;18:3443–3457. doi: 10.1105/tpc.106.042473. PubMed DOI PMC
Blum H, Beier H, Gross HJ. Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987;8:93–99. doi: 10.1002/elps.1150080203. DOI
Borisjuk N, Hemleben V. Nucleotide-sequence of the potato rDNA intergenic spacer. Plant Mol Biol. 1993;21:381–384. doi: 10.1007/BF00019953. PubMed DOI
Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J. 2004;38:276–284. doi: 10.1111/j.1365-313X.2004.02048.x. PubMed DOI
Carrera E, Bou J, Garcia-Martinez JL, Prat S. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J. 2000;22:247–256. doi: 10.1046/j.1365-313x.2000.00736.x. PubMed DOI
Ewing EE. The role of hormones in potato (Solanum tuberosum L.) tuberization. In: Davies PJ, editor. Plant Hormones. Dordrecht, Kluwer Academic Publishers; 1995. pp. 689–724.
Fernie AR, Willmitzer L. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 2001;127:1459–1465. doi: 10.1104/pp.010764. PubMed DOI PMC
Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8:93–102. doi: 10.1016/j.pbi.2004.11.003. PubMed DOI
Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:1037–1053. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V. PubMed DOI
Gregory LE. Some factors for tuberization in the potato plant. Am J Bot. 1956;43:281–288. doi: 10.2307/2438945. DOI
Hashimoto A, Yamamoto Y, Theg SM. Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Lett. 1996;391:29–34. doi: 10.1016/0014-5793(96)00686-2. PubMed DOI
Heide H, Kalisz HM, Follmann H. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity. J Plant Physiol. 2004;161:139–149. doi: 10.1078/0176-1617-01033. PubMed DOI
Heeres P, Schippers-Rozenboom M, Jacobsen E, Visser RGF. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica. 2002;124:13–22. doi: 10.1023/A:1015689112703. DOI
Hendriks T, Vreugdenhil D, Stiekema WJ. Patatin and 4 serine proteinase-inhibitor genes are differentially expressed during potato-tuber development. Plant Mol Biol. 1991;17:385–394. doi: 10.1007/BF00040633. PubMed DOI
Jackson SD. Multiple signaling pathways control tuber induction in potato. Plant Physiol. 1999;119:1–8. doi: 10.1104/pp.119.1.1. PubMed DOI PMC
Jackson SD, Heyer A, Dietze J, Prat S. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J. 1996;9:159–166. doi: 10.1046/j.1365-313X.1996.09020159.x. DOI
Jackson SD, Prat S. Control of tuberisation in potato by gibberellins and phytochrome B. Physiol Plant. 1996;98:407–412. doi: 10.1034/j.1399-3054.1996.980224.x. DOI
Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RGF, Bachem CWB. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J. 2007;52:362–373. doi: 10.1111/j.1365-313X.2007.03245.x. PubMed DOI
Koncz C, Martini N, Mayerhofer R, Konczkalman Z, Korber H, Redei GP, Schell J. High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA. 1989;86:8467–8471. doi: 10.1073/pnas.86.21.8467. PubMed DOI PMC
Krizkova L, Hrouda M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J. 1998;16:673–680. doi: 10.1046/j.1365-313x.1998.00330.x. PubMed DOI
Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen KM, Massat N, Nunan N, McNicol JW, Karenlampi SO. Proteomic analysis of the potato tuber life cycle. Proteomics. 2006;6:6042–6052. doi: 10.1002/pmic.200600383. PubMed DOI
Levy D, Seabrook JEA, Coleman S. Enhancement of tuberization of axillary shoot buds of potato (Solanum tuberosum L.) cultivars cultured in vitro. J Exp Bot. 1993;44:381–386. doi: 10.1093/jxb/44.2.381. DOI
Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol Plant. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI
Lorenzen JH, Ewing EE. Starch accumulation in leaves of potato (Solanum Tuberosum L) during the 1st 18 days of photoperiod treatment. Ann Bot. 1992;69:481–485.
Lundin B, Hansson M, Schoefs B, Vener AV, Spetea C. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. Plant J. 2007;49:528–539. doi: 10.1111/j.1365-313X.2006.02976.x. PubMed DOI
Machackova I, Konstantinova TN, Sergeeva LI, Lozhnikova VN, Golyanovskaya SA, Dudko ND, Eder J, Aksenova NP. Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum. Physiol Plant. 1998;102:272–278. doi: 10.1034/j.1399-3054.1998.1020215.x. DOI
Martinez-Garcia JF, Garcia-Martinez JL, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul. 2001;20:377–386. doi: 10.1007/s003440010036. PubMed DOI
Mok DWS, Mok MC. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI
Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F. Functional dissection of two Arabidopsis PsbO proteins. FEBS J. 2005;272:2165–2175. doi: 10.1111/j.1742-4658.2005.04636.x. PubMed DOI
Raices M, Ulloa RM, MacIntosh GC, Crespi M, Tellez-Inon MT. StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. J Exp Bot. 2003;54:2589–2591. doi: 10.1093/jxb/erg282. PubMed DOI
Renaut J, Lutts S, Hoffmann L, Hausman JF. Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol. 2004;6:81–90. doi: 10.1055/s-2004-815733. PubMed DOI
Risseeuw E, FrankevanDijk MEI, Hooykaas PJJ. Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J. 1997;11:717–728. doi: 10.1046/j.1365-313X.1997.11040717.x. PubMed DOI
Rodriguez-Falcon M, Bou J, Prat S. Seasonal control of tuberization in potato: conserved elements with the flowering response. Annu Rev Plant Biol. 2006;57:151–180. doi: 10.1146/annurev.arplant.57.032905.105224. PubMed DOI
Roitsch T, Ehness R. Regulation of source/sink relations by cytokinins. Plant Growth Regul. 2000;32:359–367. doi: 10.1023/A:1010781500705. DOI
Sambrook J, Fitsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Press; 1989.
Sarkar D. The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis. Plant Cell Rep. 2008;27:1–8. doi: 10.1007/s00299-007-0457-x. PubMed DOI
Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell Tiss Org. 2006;87:285–295. doi: 10.1007/s11240-006-9166-3. DOI
Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the waxy locus in maize. Cell. 1983;35:225–233. doi: 10.1016/0092-8674(83)90225-8. PubMed DOI
Steinbachova-Vojtiskova L, Tylova E, Soukup A, Novicka H, Votrubova O, Lipavska H, Cizkova H. Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Environ Exp Bot. 2006;57:246–257. doi: 10.1016/j.envexpbot.2005.06.003. DOI
Stiekema WJ, Heidekamp F, Dirkse WG, Vanbeckum J, Dehaan P, Tenbosch C, Louwerse JD. Molecular-cloning and analysis of 4 potato-tuber messenger-RNAs. Plant Mol Biol. 1988;11:255–269. doi: 10.1007/BF00027383. PubMed DOI
Suorsa M, Aro EM. Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res. 2007;93:89–100. doi: 10.1007/s11120-007-9154-4. PubMed DOI
Svobodova H, Lipavska H, Albrechtova J. Non-structural carbohydrate status in Norway spruce buds in the context of annual bud structural development as affected by acidic pollution. Environ Exp Bot. 2000;43:253–265. doi: 10.1016/S0098-8472(99)00062-3. PubMed DOI
Syrovy I, Hodny Z. Staining and quantification of proteins separated by polyacrylamide-gel electrophoresis. J Chromatograph Biomed Applic. 1991;569:175–196. doi: 10.1016/0378-4347(91)80229-6. PubMed DOI
Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001;13:385–398. doi: 10.1105/tpc.13.2.385. PubMed DOI PMC
Volkov RA, Komarova NY, Panchuk II, Hemleben V. Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum) Mol Phylogenet Evol. 2003;29:187–202. doi: 10.1016/S1055-7903(03)00092-7. PubMed DOI
Vreugdenhil D, Xu X, Jung CS, van Lammeren AAM, Ewing EE. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings: a re-evaluation. Ann Bot. 1999;84:675–680. doi: 10.1006/anbo.1999.0950. DOI
Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 1998;117:575–584. doi: 10.1104/pp.117.2.575. PubMed DOI PMC
Xu X, Vreugdenhil D, van Lammeren AAM. Cell division and cell enlargement during potato tuber formation. J Exp Bot. 1998;49:573–582. doi: 10.1093/jexbot/49.320.573. DOI