AIM: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle. METHODS: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling). RESULTS: CD attenuated the rhythmic output of the central clock in the suprachiasmatic nucleus via Prok2 signaling, thereby disrupting locomotor activity, the estrous cycle, sleep patterns, and mutual phase relationship between the central and peripheral clocks. In the periphery, CD abolished Per1,2 expression rhythms in peripheral tissues (liver, pancreas, colon) and worsened glucose homeostasis. In the liver, it impaired the expression of NAD+, lipid, and cholesterol metabolism genes and abolished most of the high-amplitude rhythms of lipids and polar metabolites. Interestingly, CD abolished the circadian rhythm of Cpt1a expression and increased the levels of long-chain acylcarnitines (ACar 18:2, ACar 16:0), indicating enhanced fatty acid oxidation in mitochondria. CONCLUSION: Our data show the widespread effects of CD on metabolism and point to ACars as biomarkers for CD due to misaligned sleep and feeding patterns.
- MeSH
- Circadian Clocks physiology MeSH
- Circadian Rhythm * physiology MeSH
- Photoperiod MeSH
- Liver * metabolism MeSH
- Carnitine * analogs & derivatives metabolism MeSH
- Rats MeSH
- Metabolome * MeSH
- Suprachiasmatic Nucleus metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The Institute of Physiology of the Czech Academy of Sciences (CAS) has been involved in the field of chronobiology, i.e., in research on temporal regulation of physiological processes, since 1970. The review describes the first 35 years of the research mostly on the effect of light and daylength, i.e., photoperiod, on entrainment or resetting of the pineal rhythm in melatonin production and of intrinsic rhythms in the central biological clock. This clock controls pineal and other circadian rhythms and is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. During the early chronobiological research, many original findings have been reported, e.g. on mechanisms of resetting of the pineal rhythm in melatonin production by short light pulses or by long exposures of animals to light at night, on modulation of the nocturnal melatonin production by the photoperiod or on the presence of high affinity melatonin binding sites in the SCN. The first evidence was given that the photoperiod modulates functional properties of the SCN and hence the SCN not only controls the daily programme of the organism but it may serve also as a calendar measuring the time of a year. During all the years, the chronobiological community has started to talk about "the Czech school of chronobiology". At present, the today ́s Laboratory of Biological Rhythms of the Institute of Physiology CAS continues in the chronobiological research and the studies have been extended to the entire circadian timekeeping system in mammals with focus on its ontogenesis, entrainment mechanisms and circadian regulation of physiological functions. Key words: Pineal, Melatonin, AA-NAT rhythm, Light entrainment, Photoperiod, SCN clock.
- MeSH
- Academies and Institutes MeSH
- Biological Clocks physiology MeSH
- Circadian Clocks physiology MeSH
- Circadian Rhythm * physiology MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Pineal Gland * metabolism physiology MeSH
- Photoperiod MeSH
- Humans MeSH
- Melatonin metabolism MeSH
- Brain metabolism physiology MeSH
- Suprachiasmatic Nucleus physiology metabolism MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
- MeSH
- Wakefulness physiology MeSH
- Circadian Rhythm * physiology MeSH
- Energy Metabolism * physiology MeSH
- Photoperiod * MeSH
- Adipose Tissue, Brown metabolism physiology MeSH
- Mice MeSH
- Sleep physiology MeSH
- Body Temperature * physiology MeSH
- Ultradian Rhythm * physiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.
- MeSH
- Phenotype MeSH
- Photoperiod * MeSH
- Climate Change MeSH
- Plant Leaves * physiology MeSH
- Seasons MeSH
- Plants MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
KEY MESSAGE: The new 4.2-kb transposable insertion in the intron of ZmCCT reversely responded relative to the known 5.1-kb transposable insertion to photoperiods between low- and high-latitude regions. Flowering time is a key trait for cereal adaptation that is controlled by a complex genetic background in maize. The effect of multiple alleles from a quantitative trait locus (QTL) on flowering time remains largely unknown. Here, we fine-mapped a major QTL for flowering time on maize chromosome 10 corresponding to ZmCCT, where a new allele with a 4.2-kilobase (kb) transposable insertion was present in the intron. The known allele with a 5.1-kb transposon insertion in the promoter of ZmCCT enhances flowering in high-latitude regions, but has no effect on flowering time in low-latitude regions in comparison with the null allele lacking this insertion. However, our new allele with a 4.2-kb insertion reduced flowering in the low-latitude region, but produced unchanged flowering time in the high-latitude region relative to the 5.1-kb transposable insertion. Transcription analysis revealed that the new allele with 4.2-kb insertion versus the 5.1-kb insertion repressed and unchanged the transcription of ZmCCT in the low- and high-latitude regions, respectively. Thus, the allele with the 4.2-kb transposable insertion showed a completely opposite response to photoperiods between these two regions. Phylogenetic analysis revealed that the 4.2-kb transposable insertion in the two Northern flint corns originated from tropical maize. RNA-seq analysis and dual-luciferase transient expression assays further identified a conserved gene regulation network of ZmCCT between maize and rice, in which ZmCCT directly repressed the transcription of the florigen gene ZCN8 via ZmEhd1. Our results suggest that transposable elements play an important role in maize adaptation.
- MeSH
- Chromosomes, Plant genetics MeSH
- Phenotype MeSH
- Photoperiod * MeSH
- Adaptation, Physiological MeSH
- Zea mays genetics growth & development radiation effects MeSH
- Flowers genetics growth & development radiation effects MeSH
- Quantitative Trait Loci MeSH
- Chromosome Mapping methods MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Plant * MeSH
- Plant Proteins genetics metabolism MeSH
- DNA Transposable Elements * MeSH
- Publication type
- Journal Article MeSH
The circadian system provides organisms with a temporal organization that optimizes their adaptation to environmental fluctuations on a 24-hr basis. In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) develops during the perinatal period. The rhythmicity first appears at the level of individual SCN neurons during the fetal stage, and this step is often misinterpreted as the time of complete SCN clock development. However, the process is only finalized when the SCN begin to play a role of the central clock in the body, that is, when they are able to generate robust rhythmicity at the cell population level, entrain the rhythmic signal with external light-dark cycles and convey this signal to the rest of the body. The development is gradual and correlates with morphological maturation of the SCN structural complexity, which is based on intercellular network formation. The aim of this review is to summarize events related to the first emergence of circadian oscillations in the fetal SCN clock. Although a large amount of data on ontogenesis of the circadian system have been accumulated, how exactly the immature SCN converts into a functional central clock has still remained rather elusive. In this review, the hypothesis of how the SCN attains its rhythmicity at the tissue level is discussed in context with the recent advances in the field. For an extensive summary of the complete ontogenetic development of the circadian system, the readers are referred to other previously published reviews.
- MeSH
- Circadian Clocks * MeSH
- Circadian Rhythm * MeSH
- Photoperiod MeSH
- Humans MeSH
- Suprachiasmatic Nucleus MeSH
- Fetus MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.
- MeSH
- Models, Biological MeSH
- Tracheophyta genetics growth & development MeSH
- Wood growth & development MeSH
- Ecosystem MeSH
- Photoperiod MeSH
- Global Warming MeSH
- Climate Change MeSH
- Forests MeSH
- Climate MeSH
- Seasons MeSH
- Trees growth & development MeSH
- Temperature MeSH
- Xylem growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Abandoning daylight saving time in Europe raises the topical issue of proper setting of yearlong social time, which needs mapping of various socio-demographic factors, including chronotype, in specific geographic regions. This study represents the first detailed large scale chronotyping in the Czech Republic based on data collected in the complex panel socio-demographic survey in households (total 8760 respondents) and the socio-physiological survey, in which chronotyped participants also provided blood samples (n = 1107). Chronotype assessment based on sleep phase (MCTQ questions and/or time-use diary) correlated with a self-assessed interval of best alertness. The mean chronotype of the Czech population defined as mid sleep phase (MSFsc) was 3.13 ± 0.02 h. Chronotype exhibited significant east-to-westward, north-to-southward, and settlement size-dependent gradients and was associated with age, sex, partnership, and time spent outdoors as previously demonstrated. Moreover, for subjects younger than 40 years, childcare was highly associated with earlier chronotype, while dog care was associated with later chronotype. Body mass index correlated with later chronotype in women whose extreme chronotype was also associated with lower plasma levels of protective HDL cholesterol. Based on the chronotype prevalence the results favour yearlong Standard Time as the best choice for this geographic region.
- MeSH
- Time Factors MeSH
- Chronobiology Discipline statistics & numerical data MeSH
- Circadian Clocks physiology MeSH
- Demography statistics & numerical data MeSH
- Child MeSH
- Adult MeSH
- Photoperiod * MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Surveys and Questionnaires statistics & numerical data MeSH
- Sex Factors MeSH
- Sleep physiology MeSH
- Age Factors MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH