Lactoferrin Isolation Using Monolithic Column Coupled with Spectrometric or Micro-Amperometric Detector
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27879717
PubMed Central
PMC3681142
DOI
10.3390/s8010464
PII: s8010464
Knihovny.cz E-zdroje
- Klíčová slova
- Electrochemistry, Lactoferrin, Linear Sweep Voltammetry, Liquid Chromatography, Milk Protein, Monolithic Column, Screen-Printed Carbon Electrode, UV-VIS Spectrometry,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lactoferrin is a multifunctional protein with antimicrobial activity and others tohealth beneficial properties. The main aim of this work was to propose easy to usetechnique for lactoferrin isolation from cow colostrum samples. Primarily we utilizedsodium dodecyl sulphate - polyacrylamide gel electrophoresis for isolation of lactoferrinfrom the real samples. Moreover we tested automated microfluidic Experionelectrophoresis system to isolate lactoferrin from the collostrum sample. The welldeveloped signal of lactoferrin was determined with detection limit (3 S/N) of 20 ng/ml. Inspite of the fact that Experion is faster than SDS-PAGE both separation techniques cannotbe used in routine analysis. Therefore we have tested third separation technique, ionexchange chromatography, using monolithic column coupled with UV-VIS detector (LCUV-VIS). We optimized wave length (280 nm), ionic strength of the elution solution (1.5M NaCl) and flow rate of the retention and elution solutions (0.25 ml/min and 0.75 ml/min.respectively). Under the optimal conditions the detection limit was estimated as 0.1 μg/mlof lactoferrin measured. Using LC-UV-VIS we determined that lactoferrin concentrationvaried from 0.5 g/l to 1.1 g/l in cow colostrums collected in the certain time interval up to 72 hours after birth. Further we focused on miniaturization of detection device. We testedamperometric detection at carbon electrode. The results encouraged us to attempt tominiaturise whole detection system and to test it on analysis of real samples of humanfaeces, because lactoferrin level in faeces is closely associated with the inflammations ofintestine mucous membrane. For the purpose of miniaturization we employed thetechnology of printed electrodes. The detection limit of lactoferrin was estimated as 10μg/ml measured by the screen-printed electrodes fabricated by us. The fabricatedelectrodes were compared with commercially available ones. It follows from the obtainedresults that the responses measured by commercial electrodes are app. ten times highercompared with those measured by the electrodes fabricated by us. This phenomenonrelates with smaller working electrode surface area of the electrodes fabricated by us(about 50 %) compared to the commercial ones. The screen-printed electrodes fabricatedby us were utilized for determination of lactoferrin faeces. Regarding to fact that sample offaeces was obtained from young and healthy man the amount of lactoferrin in sample wasunder the limit of detection of this method.
Department Chemistry Faculty of Science Masaryk University Kotlarska 2 CZ 611 37 Brno Czech Republic
Zobrazit více v PubMed
Bezkorovainy A. Human milk and colostrum proteins - review. J. Dairy Sci. 1977;60:1023–1037. PubMed
Sanchez L., Aranda P., Perez M.D., Calvo M. Concentration of Lactoferrin and Transferrin Throughout Lactation in Cows Colostrum and Milk. Biol. Chem. Hoppe-Seyler. 1988;369:1005–1008. PubMed
Sanchez L., Calvo M., Brock J.H. Biological Role of Lactoferrin. Arch. Dis. Child. 1992;67:657–661. PubMed PMC
Sanchez L., Peiro J.M., Castillo H., Perez M.D., Ena J.M., Calvo M. Kinetic-Parameters for Denaturation of Bovine-Milk Lactoferrin. J. Food Sci. 1992;57:873–879.
Sharp P., Srai S.K. Molecular mechanisms involved in intestinal iron absorption. World J. Gastroenterol. 2007;13:4716–4724. PubMed PMC
Levay P.F., Viljoen M. Lactoferrin - a General-Review. Haematologica. 1995;80:252–267. PubMed
Brisson G., Britten M., Pouliot Y. Heat-induced aggregation of bovine lactoferrin at neutral pH: Effect of iron saturation. Int. Dairy J. 2007;17:617–624.
Bernal V., Jelen P. Thermal-Stability of Whey Proteins - a Calorimetric Study. J. Dairy Sci. 1985;68:2847–2852.
Baker E.N., Baker H.M. Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci. 2005;62:2531–2539. PubMed PMC
Baker H.M., Baker E.N. Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals. 2004;17:209–216. PubMed
Weinberg E.D. Antibiotic properties and applications of lactoferrin. Curr. Pharm. Design. 2007;13:801–811. PubMed
Struff W.G., Sprotte G. Bovine colostrum as a biologic in clinical medicine: a review - Part I: Biotechnological standards, pharmacodynamic and pharmacolkinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 2007;45:193–202. PubMed
Pan Y., Rowney M., Guo P., Hobman P. Biological properties of lactoferrin: an overview. Aust. J. Dairy Technol. 2007;62:31–42.
Berlov M.N., Korableva E.S., Andreeva Y.V., Ovchinnikova T.V., Kokryakov V.N. Lactoferrin from canine neutrophils: Isolation and physicochemical and antimicrobial properties. Biochem. -Moscow. 2007;72:445–451. PubMed
Piccinini R., Gabai G., Bailoni L., Simonetto A., Dapra V., Zecconi A. Influence of the suppression of dry period on several blood and milk markers in dairy cows. Milchwiss.-Milk Sci. Int. 2007;62:367–370.
Hwang S.A., Wilk K.M., Budnicka M., Olsen M., Bangale Y.A., Hunter R.L., Kruzel M.L., Actor J.K. Lactoferrin enhanced efficacy of the BCG vaccine to generate host protective responses against challenge with virulent Mycobacterium tuberculosis. Vaccine. 2007;25:6730–6743. PubMed PMC
Hwang S.A., Wilk K.M., Bangale Y.A., Kruzel M.L., Actor J.K. Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med. Microbiol. Immunol. 2007;196:171–180. PubMed PMC
Yoshise R.E., Matsumoto M., Chiji H., Kuwata H., Shin K., Yamauchi K., Tamura Y., Tanaka T., Kumura H., Shimazaki K. Profiles of bovine lactoferrin in the gastrointestinal tracts of rats as observed by ELISA, Western blotting and SELDI-affinity MS. Milchwiss.-Milk Sci. Int. 2007;62:446–450.
Caraher E.M., Gumulapurapu K., Taggart C.C., Murphy P., McClean S., Callaghan M. The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms. J. Antimicrob. Chemother. 2007;60:546–554. PubMed
Beeckman D.S.A., Van Droogenbroeck C., De Cock B.J.A., Van Oostveltdt P., Vanrompay D.C.G. Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasion in HD11 chicken macrophages. Vet. Res. 2007;38:729–739. PubMed
Hanson L.A. Breast-feeding and immune function. Proc. Nutr. Soc. 2007;66:384–396. PubMed
Senkovich O., Cook W.J., Mirza S., Hollingshead S.K., Protasevich II, Briles D.E., Chattopadhyay D. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein A provides insight into microbial defense mechanism. J. Mol. Biol. 2007;370:701–713. PubMed PMC
Flach C.F., Qadri F., Bhuiyan T.R., Alam N.H., Jennische E., Lonnroth I., Holmgren J. Broad up-regulation of innate defense factors during acute cholera. Infect. Immun. 2007;75:2343–2350. PubMed PMC
Zullo A., De Francesco V., Scaccianoce G., Manes G., Efrati C., Hassan C., Maconi G., Pighonica D., Cannaviello C., Panella C., Morini S., Lerardi E. Helicobacter pylori eradication with either quadruple regimen with lactoferrin or levofloxacin-based triple therapy: A multicentre study. Dig. Liver Dis. 2007;39:806–810. PubMed
Tursi A., Elisei W., Brandimarte G., Giorgetti G.M., Modeo M.E., Aiello F. Effect of lactoferrin supplementation on the effectiveness and tolerability of a 7-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. Med. Sci. Monitor. 2007;13:CR187–CR190. PubMed
Mistry N., Drobni P., Nasland J., Sunkari V.G., Jenssen H., Evander M. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res. 2007;75:258–265. PubMed
Patel S., Hazrati E., Cheshenko N., Galen B., Yang H.Y., Guzman E., Wang R., Herold B.C., Keller M.J. Seminal plasma reduces the effectiveness of topical polyanionic microbicides. J. Infect. Dis. 2007;196:1394–1402. PubMed
Kaito M., Iwasa M., Fujita N., Kobayashi Y., Kojima Y., Ikoma J., Imoto I., Adachi Y., Hamano H., Yamauchi K. Effect of lactoferrin in patients with chronic hepatitis C: Combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 2007;22:1894–1897. PubMed
Redwan E.M., Tabll A. Camel lactoferrin markedly inhibits hepatitis C virus genotype 4 infection of human peripheral blood leukocytes. J. Immunoass. Immunoch. 2007;28:267–277. PubMed
Novak R.M., Donoval B.A., Graham P.J., Boksa L.A., Spear G., Hershow R.C., Chen H.Y., Landay A. Cervicovaginal levels of lactoferrin, secretory leukocyte protease inhibitor, and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus (HIV)-seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin. Vaccine Immunol. 2007;14:1102–1107. PubMed PMC
Shaw J.L.V., Smith C.R., Diamandis E.P. Proteomic analysis of human cervico-vaginal fluid. J. Proteome Res. 2007;6:2859–2865. PubMed
Tang L.J., De Seta F., Odreman F., Venge P., Piva C., Guaschino S., Garcia R.C. Proteomic analysis of human cervical-vaginal fluids. J. Proteome Res. 2007;6:2874–2883. PubMed
Lupetti A., Brouwer C., Bogaards S.J.P., Welling M.M., de Heer E., Campa M., van Dissel J.T., Friesen R.H.E., Nibbering P.H. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection. J. Infect. Dis. 2007;196:1416–1424. PubMed
Enrique M., Marcos J.F., Yuste M., Martinez M., Valles S., Manzanares P. Antimicrobial action of synthetic peptides towards wine spoilage yeasts. Int. J. Food Microbiol. 2007;118:318–325. PubMed
Parodi P.W. A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Design. 2007;13:813–828. PubMed
Buccigrossi V., De Marco G., Bruzzese E., Ombrato L., Bracale I., Polito G., Guarino A. Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr. Res. 2007;61:410–414. PubMed
Mohan K., Gunasekaran P., Varalakshmi E., Hara Y., Nagini S. In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells. Cell Biol. Int. 2007;31:599–608. PubMed
Kehoe S.I., Jayarao B.M., Heinrichs A.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J. Dairy Sci. 2007;90:4108–4116. PubMed
Piccinini R., Binda E., Belotti M., Dapra V., Zecconi A. Evaluation of milk components during whole lactation in healthy quarters. J. Dairy Res. 2007;74:226–232. PubMed
Shan T., Wang Y., Wang Y., Liu J., Xu Z. Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J. Anim. Sci. 2007;85:2140–2146. PubMed
Wang Y.Z., Shan T.Z., Xu Z.R., Feng J., Wang Z.Q. Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 2007;135:263–272.
El-Hatmi H., Girardet J.M., Gaillard J.L., Yahyaoui M.H., Attia H. Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Ruminant Res. 2007;70:267–271.
Park Y.W., Juarez M., Ramos M., Haenlein G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res. 2007;68:88–113.
Han Z.S., Li Q.W., Zhang Z.Y., Xiao B., Gao D.W., Wu S.Y., Li J., Zhao H.W., Jiang Z.L., Hu J.H. High-level expression of human lactoferrin in the milk of goats by using replication-defective adenoviral vectors. Protein Expr. Purif. 2007;53:225–231. PubMed
Schoepfer A.M., Trummler M., Seeholzer P., Criblez D.H., Seibold F. Accuracy of four fecal assays in the diagnosis of colitis. Dis. Colon Rectum. 2007;50:1697–1706. PubMed
Angriman I., Scarpa M., D'Inca R., Basso D., Ruffolo C., Polese L., Sturniolo G.C., D'Amico D.F., Plebani M. Enzymes in feces: Useful markers of chronic inflammatory bowel disease. Clin. Chim. Acta. 2007;381:63–68. PubMed
Zou H., Harrington J.J., Sugumar A., Klatt K.K., Smyrk T.C., Ahlquist D.A. Detection of colorectal disease by stool defensin assay: An exploratory study. Clin. Gastroenterol. Hepatol. 2007;5:865–868. PubMed
Scarpa M., D'Inca R., Basso D., Ruffolo C., Polese L., Bertin E., Luise A., Frego M., Plebani M., Sturniolo G.C., D'Amico D.F., Angriman I. Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn's disease. Dis. Colon Rectum. 2007;50:861–869. PubMed
Hirata I., Hoshimoto M., Saito O., Kayazawa M., Nishikawa T., Murano M., Toshina K., Wang F.Y., Matsuse R. Usefulness of fecal lactoferrin and hemoglobin in diagnosis of colorectal diseases. World J. Gastroenterol. 2007;13:1569–1574. PubMed PMC
Walker T.R., Land M.L., Kartashov A., Saslowsky T.M., Lyerly D.M., Boone J.H., Rufo P.A. Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2007;44:414–422. PubMed
D'Inca R., Dal Pont E., Di Leo V., Ferronato A., Fries W., Vettorato M.G., Martines D., Sturniolo G.C. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int. J. Colorectal Dis. 2007;22:429–437. PubMed
Giuffre G., Barresi V., Skliros C., Barresi G., Tuccari G. Immunoexpression of lactoferrin in human sporadic renal cell carcinomas. Oncol. Rep. 2007;17:1021–1026. PubMed
Sabatucci A., Vachette P., Vasilyev V.B., Beltramini M., Sokolov A., Pulina M., Salvato B., Angelucci C.B., Maccarronel M., Cozzani I., Dainese E. Structural characterization of the ceruloplasmin: Lactoferrin complex in solution. J. Mol. Biol. 2007;371:1038–1046. PubMed
Sokolov A.V., Pulina M.O., Ageeva K.V., Ayrapetov M.I., Berlov M.N., Volgin G.N., Markov A.G., Yablonsky P.K., Kolodkin N.I., Zakharova E.T., Vasilyev V.B. Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. Biochem. -Moscow. 2007;72:409–415. PubMed
Chen L., Guo C., Guan Y.P., Liu H.Z. Isolation of lactoferrin from acid whey by magnetic affinity separation. Sep. Purif. Technol. 2007;56:168–174.
Lu R.R., Xu S.Y., Wang Z., Yang R.J. Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. J. Membr. Sci. 2007;297:152–161.
Andersson J., Mattiasson B. Simulated moving bed technology with a simplified approach for protein purification - Separation of lactoperoxidase and lactoferrin from whey protein concentrate. J. Chromatogr. A. 2006;1107:88–95. PubMed
Uchida T., Dosako S., Sato K., Kawakami H. Sequential separation of lactoferrin, lactoperoxidase, and secretory component by sulfate-linked ion-exchange chromatography. Milchwiss.-Milk Sci. Int. 2003;58:482–486.
Yoshida A., Wei Z., Shinmura Y., Fukunaga N. Separation of lactoferrin-a and -b from bovine colostrum. J. Dairy Sci. 2000;83:2211–2215. PubMed
Grasselli M., Cascone O. Separation of lactoferrin from bovine whey by dye affinity chromatography. Neth. Milk Dairy J. 1996;50:551–561.
Almashikhi S.A., Lichan E., Nakai S. Separation of Immunoglobulins and Lactoferrin from Cheese Whey by Chelating Chromatography. J. Dairy Sci. 1988;71:1747–1755. PubMed
Noh K.H., Rhee M.S., Imm J.Y. Separation of lactoferrin from model whey protein mixture by reverse micelles formed by cationic surfactant. Food Sci. Biotechnol. 2005;14:131–136.
Zitka O., Horna A., Stejskal K., Zehnalek J., Adam V., Havel L., Zeman L., Kizek R. Study of structural changes of lactoferrin using flow injection analysis with electrochemical detection on glassy carbon electrode. Acta Chim. Slov. 2007;54:68–73.
Billova S., Kizek R., Jelen F., Novotna P. Square-wave voltammetric determination of cefoperazone in a bacterial culture, pharmaceutical drug, milk, and urine. Anal. Bioanal. Chem. 2003;377:362–369. PubMed
Billova S., Kizek R., Palecek E. Differential pulse adsorptive stripping voltammetry of osmium-modified peptides. Bioelectrochemistry. 2002;56:63–66. PubMed
Kizek R., Masarik M., Kramer K.J., Potesil D., Bailey M., Howard J.A., Klejdus B., Mikelova R., Adam V., Trnkova L., Jelen F. An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal. Bioanal. Chem. 2005;381:1167–1178. PubMed
Kizek R., Trnkova L., Palecek E. Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal. Chem. 2001;73:4801–4807. PubMed
Kizek R., Trnkova L., Sevcikova S., Smarda J., Jelen F. Silver electrode as a sensor for determination of zinc in cell cultivation medium. Anal. Biochem. 2002;301:8–13. PubMed
Palecek E., Masarik M., Kizek R., Kuhlmeier D., Hassmann J., Schulein J. Sensitive electrochemical determination of unlabeled MutS protein and detection of point mutations in DNA. Anal. Chem. 2004;76:5930–5936. PubMed
Potesil D., Mikelova R., Adam V., Kizek R., Prusa R. Change of the protein p53 electrochemical signal according to its structural form - Quick and sensitive distinguishing of native, denatured, and aggregated form of the “guardian of the genome”. Protein J. 2006;25:23–32. PubMed
Adam V., Beklova M., Pikula J., Hubalek J., Trnkova L., Kizek R. Shapes of differential pulse voltammograms and level of metallothionein at different animal species. Sensors. 2007;7:2419–2429. PubMed PMC
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. PubMed PMC
Adam V., Zehnalek J., Petrlova J., Potesil D., Sures B., Trnkova L., Jelen F., Vitecek J., Kizek R. Phytochelatin modified electrode surface as a sensitive heavy metal ions biosensor. Sensors. 2005;5:70–84.
Babula P., Huska D., Hanustiak P., Baloun J., Krizkova S., Adam V., Hubalek J., Havel L., Zemlicka M., Horna A., Beklova M., Kizek R. Flow injection analysis coupled with carbon electrodes as the tool for analysis of naphthoquinones with respect to their content and functions in biological samples. Sensors. 2006;11:1466–1482.
Hubalek J., Hradecky J., Adam V., Krystofova O., Huska D., Masarik M., Trnkova L., Horna A., Klosova K., Adamek M., Zehnalek J., Kizek R. Spectrometric and voltammetric analysis of urease – Nickel nanoelectrode as an electrochemical sensor. Sensors. 2007;7:1238–1255.
Krizkova S., Beklova M., Pikula J., Adam V., Horna A., Kizek R. Hazards of secondary bromadiolone intoxications evaluated using high-performance liquid chromatography with electrochemical detection. Sensors. 2007;7:1271–1286.
Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;11:1498–1512.
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–959.
Supalkova V., Petrek J., Baloun J., Adam V., Bartusek K., Trnkova L., Beklova M., Diopan V., Havel L., Kizek R. Multi-instrumental investigation of affecting of early somatic embryos of Spruce by cadmium(II) and lead(II) ions. Sensors. 2007;7:743–759.
Supalkova V., Petrek J., Havel L., Krizkova S., Petrlova J., Adam V., Potesil D., Babula P., Beklova M., Horna A., Kizek R. Electrochemical sensors for detection of acetylsalicylic acid. Sensors. 2006;11:1483–1497.
Zitka O., Huska D., Krizkova S., Adam V., Chavis G.J., Trnkova L., Horna A., Hubalek J., Kizek R. An investigation of glutathione-platinum(II) interactions by means of the flow injection analysis using glassy carbon electrode. Sensors. 2007;7:1256–1270.
Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.
Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. A determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007;19:339–347.
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behaviour in the presence of heavy metal ions -biosensor. Electroanalysis. 2005;17:1649–1657.
Petrlova J., Krizkova S., Zitka O., Hubalek J., Prusa R., Adam V., Wang J., Beklova M., Sures B., Kizek R. Utilizing a chronopotentiometric sensor technique for metallothionein determination in fish tissues and their host parasites. Sens. Actuator B-Chem. 2007;127:112–119.
Petrlova J., Masarik M., Potesil D., Adam V., Trnkova L., Kizek R. Zeptomole detection of streptavidin using carbon paste electrode and square wave voltammetry. Electroanalysis. 2007;19:1177–1182.
Petrlova J., Potesil D., Mikelova R., Blastik O., Adam V., Trnkova L., Jelen F., Prusa R., Kukacka J., Kizek R. Attomole voltammetric determination of metallothionein. Electrochim. Acta. 2006;51:5112–5119.
Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173.
Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. PubMed
Stejskal K., Krizkova S., Adam V., Sures B., Trnkova L., Zehnalek J., Hubalek J., Beklova M., Hanustiak P., Svobodova Z., Horna A., Kizek R. Bio-assessing of environmental pollution via monitoring of metallothionein level using electrochemical detection. IEEE Sens. J. 2008 in press.
Supalkova V., Beklova M., Baloun J., Singer C., Sures B., Adam V., Huska D., Pikula J., Rauscherova L., Havel L., Zehnalek J., Kizek R. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry. Bioelectrochemistry. 2008 doi: 10.1016/j.bioelechem.2007.11.012. PubMed DOI
Zitka O., Stejskal K., Kleckerova A., Adam V., Beklova M., Horna A., Havel L., Kizek R. Utilizing of electrochemical techniques for detection of biological samples. Chem. Listy. 2007;101:225–231.
Kizek R., Vacek J., Trnkova L., Klejdus B., Havel L. Application of catalytic reactions on a mercury electrode for electrochemical detection of metallothioneins. Chem. Listy. 2004;98:166–173.
Mikelova R., Baloun J., Petrlova J., Adam V., Havel L., Petrek J., Horna A., Kizek R. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry. 2007;70:508–518. PubMed
Prusa R., Potesil D., Masarik M., Adam V., Kizek R., Jelen F. Fast and sensitive electrochemical detection of native, denatured, and aggregated forms of tumor suppressor protein p53. Mol. Biol. Cell. 2004;15:249A–249A.
Laemmli U.K. Cleavage of Structural Proteins During Assembly of Head of Bacteriophage-T4. Nature. 1970;227:680–685. PubMed
Diezel W., Hofmann E., Kopperschlager G. Improved Procedure for Protein Staining in Polyacrylamide Gels with a New Type of Coomassie Brilliant Blue. Anal. Biochem. 1972;48:617–620. PubMed
Long G.L., Winefordner J.D. Limit of Detection. Anal. Chem. 1983;55:A712–A724.
Lavagnini I., Antiochia R., Magno F. A calibration-base method for the evaluation of the detection limit of an electrochemical biosensor. Electroanalysis. 2007;19:1227–1230.
Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants
Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology
Amperometric Sensor for Detection of Chloride Ions
An Electrochemical Detection of Metallothioneins at the Zeptomole Level in Nanolitre Volumes