Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
22219663
PubMed Central
PMC3247708
DOI
10.3390/s100605308
PII: s100605308
Knihovny.cz E-zdroje
- Klíčová slova
- amperometry, cadmium, heavy metals, lead, maize, miniaturization, plant, screen printed electrode, sunflower, voltammetry, water,
- MeSH
- automatizace MeSH
- biosenzitivní techniky přístrojové vybavení metody MeSH
- elektrochemie přístrojové vybavení metody MeSH
- ionty analýza MeSH
- kadmium analýza MeSH
- kukuřice setá chemie MeSH
- mikroelektrody MeSH
- monitorování životního prostředí přístrojové vybavení metody MeSH
- olovo analýza MeSH
- rostliny chemie MeSH
- stopové prvky analýza MeSH
- uhlík chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- kadmium MeSH
- olovo MeSH
- stopové prvky MeSH
- uhlík MeSH
Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.
Zobrazit více v PubMed
Di Tioppi S.L., Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999;41:105–130.
Petrek J., Baloun J., Vlasinova H., Havel L., Adam V., Vitecek J., Babula P., Kizek R. Image analysis and activity of intracellular esterases as new analytical tools for determination of growth and viability of embryonic cultures of spruce (Picea sp.) treated with cadmium. Chem. Listy. 2007;101:569–577.
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–959.
Supalkova V., Petrek J., Baloun J., Adam V., Bartusek K., Trnkova L., Beklova M., Diopan V., Havel L., Kizek R. Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(II) and lead(II) ions. Sensors. 2007;7:743–759.
Zehnalek J., Adam V., Kizek R. Influence of heavy metals on production of protecting compounds in agriculture plants. Lis. Cukrov. Reparske. 2004;120:222–224.
Zehnalek J., Vacek J., Kizek R. Application of higher plants in phytoremetiation of heavy metals. Lis. Cukrov. Reparske. 2004;120:220–221.
Soylak M., Narin I., Divrikli U., Saracoglu S., Elci L., Dogan M. Preconcentration-separation of heavy metal ions in environmental samples by membrane filtration-atomic absorption spectrometry combination. Anal. Lett. 2004;37:767–780.
Sneddon J., Vincent M.D. ICP-OES and ICP-MS for the determination of metals: Application to oysters. Anal. Lett. 2008;41:1291–1303.
Ferreira S.L.C., de Andrade J.B., Korn M.D.A., Pereira M.D., Lemos V.A., dos Santos W.N.L., Rodrigues F.D., Souza A.S., Ferreira H.S., da Silva E.G.P. Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques. J. Hazard. Mater. 2007;145:358–367. PubMed
Pyrzynska K. Online sample pretreatment systems for determination of cadmium by the ETAAS method. Crit. Rev. Anal. Chem. 2007;37:39–49.
Davis A.C., Wu P., Zhang X.F., Hou X.D., Jones B.T. Determination of cadmium in biological samples. Appl. Spectrosc. Rev. 2006;41:35–75.
Yantasee W., Lin Y., Hongsirikarn K., Fryxell G.E., Addleman R., Timchalk C. Electrochemical sensors for the detection of lead and other toxic heavy metals: The next generation of personal exposure biomonitors. Environ. Health Perspect. 2007;115:1683–1690. PubMed PMC
Korn M.D.A., dos Santos D.S.S., Welz B., Vale M.G.R., Teixeira A.P., Lima D.D., Ferreira S.L.C. Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels—A review. Talanta. 2007;73:1–11. PubMed
Korn M.D.A., de Andrade J.B., de Jesus D.S., Lemos V.A., Bandeira M., dos Santos W.N.L., Bezerra M.A., Amorim F.A.C., Souza A.S., Ferreira S.L.C. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta. 2006;69:16–24. PubMed
Shaw M.J., Haddad P.R. The determination of trace metal pollutants in enviromental matrices using ion chromatography. Environ. Int. 2004;30:403–431. PubMed
Lin T.J., Chung M.F. Using monoclonal antibody to determine lead ions with a localized surface plasmon resonance fiber-optic biosensor. Sensors. 2008;8:582–593. PubMed PMC
Lewen N., Mathew S., Schenkenberger M., Raglione T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal. 2004;35:739–752. PubMed
Szlyk E., Szydlowska-Czerniak A. Determination of cadmium, lead, and copper in margarines and butters by galvanostatic stripping chronopotentiometry. J. Agric. Food Chem. 2004;52:4064–4071. PubMed
Mikkelsen O., Schroder K.H. Amalgam electrodes for electroanalysis. Electroanalysis. 2003;15:679–687.
May L.M., Russell D.A. Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance. Anal. Chim. Acta. 2003;500:119–125.
Pei J.H., Tercier-Waeber M.L., Buffle J. Simultaneous determination and speciation of zinc, cadmium, lead, and copper in natural water with minimum handling and artifacts, by voltammetry on a gel-integrated microelectrode array. Anal. Chem. 2000;72:161–171. PubMed
Fernandez-Bobes C., Fernandez-Abedul M.T., Costa-Garcia A. Anodic stripping of heavy metals using a hanging mercury drop electrode in a flow system. Electroanalysis. 1998;10:701–706.
Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.
Krizkova S., Adam V., Petrlova J., Zitka O., Stejskal K., Zehnalek J., Sures B., Trnkova L., Beklova M., Kizek R. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19:331–338.
Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173.
Wu K.B., Hu S.S., Fei J.J., Bai W. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal. Chim. Acta. 2003;489:215–221.
Yantasee W., Lin Y.H., Fryxell G.E., Busche B.J. Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS) Anal. Chim. Acta. 2004;502:207–212.
Hu C.G., Wu K.B., Dai X., Hu S.S. Simultaneous determination of lead(II) and cadmium(II) at a diacetyldioxime modified carbon paste electrode by differential pulse stripping voltammetry. Talanta. 2003;60:17–24. PubMed
Palchetti I., Cagnini A., Mascini M., Turner A.P.F. Characterisation of screen-printed electrodes for detection of heavy metals. Mikrochim. Acta. 1999;131:65–73.
Guell R., Aragay G., Fontas C., Antico E., Merkoci A. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Anal. Chim. Acta. 2008;627:219–224. PubMed
Roa G., Ramirez-Silva M.T., Romero-Romo M.A., Galicia L. Determination of lead and cadmium using a polycyclodextrin-modified carbon paste electrode with anodic stripping voltammetry. Anal. Bioanal. Chem. 2003;377:763–769. PubMed
Cooper J., Bolbot J.A., Saini S., Setford S.J. Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut. 2007;179:183–195.
Palchetti H., Laschi S., Mascini M. Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal. Chim. Acta. 2005;530:61–67.
Locatelli C. Peak area: The instrumental datum to improve the determination at ultratrace level concentration of mercury(II) at gold electrode. Electroanalysis. 2008;20:1330–1338.
Locatelli C. Voltammetric analysis of trace levels of platinum group metals principles and applications. Electroanalysis. 2007;19:2167–2175.
Locatelli C. Voltammetric peak area as instrumental datum. A possibility to improve the determination at ultratrace level concentration of platinum group metals (PGMs) and lead— Application to particulate matter. Electroanalysis. 2007;19:445–452.
Locatelli C. Possible interference in the sequential voltammetric determination at trace and ultratrace concentration level of platinum group metals (PGMs) and lead—Application to environmental matrices. Electrochim. Acta. 2006;52:614–622.
Locatelli C. Simultaneous square wave, stripping voltammetric determination of platinum group metals (PGMs) and lead at trace and ultratrace concentration level—Application to surface water. Anal. Chim. Acta. 2006;557:70–77.
Locatelli C., Melucci D., Torsi G. Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. Anal. Bioanal. Chem. 2005;382:1567–1573. PubMed
Locatelli C. Overlapping voltammetric peaks—An analytical procedure for simultaneous determination of trace metals. Application to food and environmental matrices. Anal. Bioanal. Chem. 2005;381:1073–1081. PubMed
Paneli M.G., Voulgaropoulos A. Applications of Adsorptive Stripping Voltammetry in the Determination of Trace and Ultratrace Metals. Electroanalysis. 1993;5:355–373.
Wang J. Analytical Electrochemistry. VCH Publishers; New York, NY, USA: 1994.
White N.M., Turner J.D. Thick-film sensors: Past, present and future. Meas. Sci. Technol. 1997;8:1–20.
Fujcik L., Prokop R., Prasek J., Hubalek J., Vrba R. New CMOS potentiostat as ASIC for several electrochemical microsensors construction. Microelectron. Int. 2009;27:3–10.
Adam V., Zitka O., Dolezal P., Zeman L., Horna A., Hubalek J., Sileny J., Krizkova S., Trnkova L., Kizek R. Lactoferrin isolation using monolithic column coupled with spectrometric or micro-amperometric detector. Sensors. 2008;8:464–487. PubMed PMC
Krystofova O., Shestivska V., Galiova M., Novotny K., Kaiser J., Zehnalek J., Babula P., Opatrilova R., Adam V., Kizek R. Sunflower plants as bioindicators of environmental pollution with lead(II) ions. Sensors. 2009;9:5040–5058. PubMed PMC
Vacek J., Petrek J., Kizek R., Havel L., Klejdus B., Trnkova L., Jelen F. Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry. 2004;63:347–351. PubMed
Burham N., Abdel-Azeem S.M., El-Shahat M.F. Separation and determination of trace amounts of zinc, lead, cadmium and mercury in tap and Qaroun lake water using polyurethane foam functionalized with 4-hydroxytoluene and 4-hydroxyacetophenone. Anal. Chim. Acta. 2006;579:193–201. PubMed
Petrlova J., Krizkova S., Zitka O., Hubalek J., Prusa R., Adam V., Wang J., Beklova M., Sures B., Kizek R. Utilizing a chronopotentiometric sensor technique for metallothionein determination in fish tissues and their host parasites. Sens. Actuator B-Chem. 2007;127:112–119.
Hubalek J., Hradecky J., Adam V., Krystofova O., Huska D., Masarik M., Trnkova L., Horna A., Klosova K., Adamek M., Zehnalek J., Kizek R. Spectrometric and voltammetric analysis of urease-Nickel nanoelectrode as an electrochemical sensor. Sensors. 2007;7:1238–1255.
Supalkova V., Petrek J., Havel L., Krizkova S., Petrlova J., Adam V., Potesil D., Babula P., Beklova M., Horna A., Kizek R. Electrochemical sensors for detection of acetylsalicylic acid. Sensors. 2006;6:1483–1497.
Huska D., Zitka O., Adam V., Beklova M., Krizkova S., Zeman L., Horna A., Havel L., Zehnalek J., Kizek R. A sensor for investigating the interaction between biologically important heavy metals and glutathione. Czech J. Anim. Sci. 2007;52:37–43.
Vitecek J., Petrlova J., Petrek J., Adam V., Potesil D., Havel L., Mikelova R., Trnkova L., Kizek R. Electrochemical study of S-nitrosoglutathione and nitric oxide by carbon fibre NO sensor and cyclic voltammetry—possible way of monitoring of nitric oxide. Electrochim. Acta. 2006;51:5087–5094.
Verma N., Singh M. Biosensors for heavy metals. Biometals. 2005;18:121–129. PubMed
Rudnitskaya A., Legin A., Seleznev B., Kirsanov D., Vlasov Y. Detection of ultra-low activities of heavy metal ions by an array of potentiometric chemical sensors. Microchim. Acta. 2008;163:71–80.
Hwang G.H., Han W.K., Park J.S., Kang S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta. 2008;76:301–308. PubMed
Zhu L.D., Tian C.Y., Yang R.L., Zhai J.L. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode. Electroanalysis. 2008;20:527–533.
Adami M., Marco S., Nicolini C. A potentiometric stripping analyzer for multianalyte screening. Electroanalysis. 2007;19:1288–1294.
Li G., Wan C.D., Ji Z.M., Wu K.B. An electrochemical sensor for Cd2+ based on the inducing adsorption ability of I. Sens. Actuator B-Chem. 2007;124:1–5.
Lead ions encapsulated in liposomes and their effect on Staphylococcus aureus
Voltammetry as a tool for characterization of CdTe quantum dots
Investigation into the effect of molds in grasses on their content of low molecular mass thiols
Bio-sensing of cadmium(II) ions using Staphylococcus aureus