Bio-sensing of cadmium(II) ions using Staphylococcus aureus
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22346664
PubMed Central
PMC3274306
DOI
10.3390/s111110638
PII: s111110638
Knihovny.cz E-zdroje
- Klíčová slova
- Brdicka reaction, Staphylococcus aureus, biosensor, cadmium, electrochemistry, high performance liquid chromatography with electrochemical detection, metabolic activity, metabolome, microbiome, spectrophotometry, voltammetry,
- MeSH
- biosenzitivní techniky metody MeSH
- disacharidy metabolismus MeSH
- elektrochemické techniky MeSH
- fosfatasy metabolismus MeSH
- glutathion metabolismus MeSH
- glutathiondisulfid metabolismus MeSH
- glutathiontransferasa metabolismus MeSH
- hydrolasy metabolismus MeSH
- kadmium analýza metabolismus farmakologie MeSH
- látky znečišťující životní prostředí analýza metabolismus farmakologie MeSH
- metabolismus účinky léků MeSH
- metalothionein metabolismus MeSH
- monosacharidy metabolismus MeSH
- proliferace buněk účinky léků MeSH
- proteiny metabolismus MeSH
- Staphylococcus aureus cytologie účinky léků metabolismus MeSH
- sulfhydrylové sloučeniny metabolismus MeSH
- ureasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginine deiminase MeSH Prohlížeč
- disacharidy MeSH
- fosfatasy MeSH
- glutathion MeSH
- glutathiondisulfid MeSH
- glutathiontransferasa MeSH
- hydrolasy MeSH
- kadmium MeSH
- látky znečišťující životní prostředí MeSH
- metalothionein MeSH
- monosacharidy MeSH
- proteiny MeSH
- sulfhydrylové sloučeniny MeSH
- ureasa MeSH
Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL(-1)) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds-specifically the protein metallothionein (0.79-26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190-5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6-274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.
Zobrazit více v PubMed
Han F.X.X., Banin A., Su Y., Monts D.L., Plodinec M.J., Kingery W.L., Triplett G.E. Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften. 2002;89:497–504. PubMed
UNEP Lead (pb) and Cadmium (Cd) at the 26th Session of the Governing Council Nairobi 21 to 24 February 2011. Available online: http://www.unep.org/hazardoussubstances/LeadCadmium/ScientificReviews/PreparationforGC26/tabid/6749/Default.aspx (accessed on 16 September 2011).
Agency for Toxic Substance and Disease Registry (ATSDR), US Toxicological Profile for Cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control; Atlanta, GA, USA: Available online: http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 16 September 2011).
Garrett R.G. Natural sources of metals to the environment. Hum. Ecol. Risk Assess. 2000;6:945–963.
Johansson C., Norman M., Burman L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009;43:4681–4688.
Ohms D., Kohlhase M., Benczur-Urmossy G., Schadlich G. New developments on high power alkaline batteries for industrial applications. J. Power Sources. 2002;105:127–133.
He Q.B., Singh B.R. Crop uptake of cadmium from phosphorus fertilizers. 2. Relationship with extractable soil cadmium. Water Air Soil Pollut. 1994;74:267–280.
Mazen A., Faheed F.A., Ahmed A.F. Study of potential impacts of using sewage sludge in the amendment of desert reclaimed soil on wheat and jews mallow plants. Braz. Arch. Biol. Technol. 2010;53:917–930.
Huff J., Lunn R.M., Waalkes M.P., Tomatis L., Infante P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health. 2007;13:202–212. PubMed PMC
Haouem S., Najjar M.F., El Hani A., Sakly R. Accumulation of cadmium and its effects on testis function in rats given diet containing cadmium-polluted radish bulb. Exp. Toxicol. Pathol. 2008;59:307–311. PubMed
Haferburg G., Kothe E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007;47:453–467. PubMed
Nies D.H. The cobalt, zinc, and cadmium efflux system CzcABC from alcaligenes-eutrophus functions as a cation-proton antiporter in Escherichia-coli. J. Bacteriol. 1995;177:2707–2712. PubMed PMC
Nies D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999;51:730–750. PubMed
Nies D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003;27:313–339. PubMed
Majzlik P., Strasky A., Adam V., Nemec M., Trnkova L., Zehnalek J., Hubalek J., Provaznik I., Kizek R. Influence of zinc(II) and copper(II) ions on streptomyces bacteria revealed by electrochemistry. Int. J. Electrochem. Sci. 2011;6:2171–2191.
Nucifora G., Chu L., Misra T.K., Silver S. Cadmium resistance from Staphylococcus aureus plasmid pi258 cada gene results from a cadmium-efflux atpase. Proc. Natl. Acad. Sci. USA. 1989;86:3544–3548. PubMed PMC
Silver S., Nucifora G., Chu L., Misra T.K. Bacterial-resistance atpases—Primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 1989;14:76–80. PubMed
Tynecka Z., Malm A., Skwarek T. Effect of Cd2+ on growth of the cadmium-resistant and cadmium-sensitive Staphylococcus aureus. Acta Microbiol. Polonica. 1989;38:117–129. PubMed
Bruins M.R., Kapil S., Oehme F.W. Microbial resistance to metals in the environment. Ecotoxol. Environ. Saf. 2000;45:198–207. PubMed
Novick R.P., Roth C. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 1968;95:1335–1342. PubMed PMC
Silver S., Walderhaug M. Gene-regulation of plasmid-determined and chromosome-determined inorganic-ion transport in bacteria. Microb. Rev. 1992;56:195–228. PubMed PMC
Tynecka Z., Gos Z., Zajac J. Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J. Bacteriol. 1981;147:305–312. PubMed PMC
Turner J.S., Morby A.P., Whitton B.A., Gupta A., Robinson N.J. Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 1993;268:4494–4498. PubMed
Gronow M. Biosensors. Trends Biochem. Sci. 1984;9:336–340.
Huska D., Zitka O., Krystofova O., Adam V., Babula P., Zehnalek J., Bartusek K., Beklova M., Havel L., Kizek R. Effects of cadmium(II) ions on early somatic embryos of norway spruce studied by using electrochemical techniques and nuclear magnetic resonance. Int. J. Electrochem. Sci. 2010;5:1535–1549.
Sochor J., Majzlik P., Salas P., Adam V., Trnkova L., Hubalek J., Kizek R. A study of availability of heavy metal ions by using various exracction procedures and electrochemical detection. Lis. Cukrov. Repar. 2010;126:414–415.
Zitka O., Huska D., Adam V., Horna A., Beklova M., Svobodova Z., Kizek R. Coularray detector as a tool for estimation of acute toxicity of silver(I) ions. Int. J. Electrochem. Sci. 2010;5:1082–1089.
Daunert S., Barrett G., Feliciano J.S., Shetty R.S., Shrestha S., Smith-Spencer W. Genetically engineered whale-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev. 2000;100:2705–2738. PubMed
Ramanathan S., Ensor M., Daunert S. Bacterial biosensors for monitoring toxic metals. Trends Biotechnol. 1997;15:500–506. PubMed
Stocker J., Balluch D., Gsell M., Harms H., Feliciano J., Daunert S., Malik K.A., van der Meer J.R. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 2003;37:4743–4750. PubMed
Badihi-Mossberg M., Buchner V., Rishpon J. Electrochemical biosensors for pollutants in the environment. Electroanalysis. 2007;19:2015–2028.
Neufeld T., Schwartz-Mittelmann A., Biran D., Ron E.Z., Rishpon J. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal. Chem. 2003;75:580–585. PubMed
Paitan Y., Biran D., Biran I., Shechter N., Babai R., Rishpon J., Ron E.Z. On-line and in situ biosensors for monitoring environmental pollution. Biotechnol. Adv. 2003;22:27–33. PubMed
Biran I., Babai R., Levcov K., Rishpon J., Ron E.Z. Online and in situ monitoring of environmental pollutants: Electrochemical biosensing of cadmium. Environ. Microbiol. 2000;2:285–290. PubMed
Biran I., Rissin D.M., Ron E.Z., Walt D.R. Optical imaging fiber-based live bacterial cell array biosensor. Anal. Biochem. 2003;315:106–113. PubMed
Yong D.M., Liu C., Yu D.B., Dong S.J. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor. Talanta. 2011;84:7–12. PubMed
Akyilmaz E., Dinckaya E. An amperometric microbial biosensor development based on candida tropicalis yeast cells for sensitive determination of ethanol. Biosens. Bioelectron. 2005;20:1263–1269. PubMed
Lei Y., Mulchandani P., Chen W., Wang J., Mulchandani A. Arthrobacter sp js443-based whole cell amperometric biosensor for p-nitrophenol. Electroanalysis. 2004;16:2030–2034.
Gaberlein S., Spener F., Zaborosch C. Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl. Microbiol. Biotechnol. 2000;54:652–658. PubMed
Bhatia R., Dilleen J.W., Atkinson A.L., Rawson D.M. Combined physico-chemical and biological sensing in environmental monitoring. Biosens. Bioelectron. 2003;18:667–674. PubMed
Rensing C., Maier R.M. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxol. Environ. Saf. 2003;56:140–147. PubMed
Ben-Yoav H., Elad T., Shlomovits O., Belkin S., Shacham-Diamand Y. Optical modeling of bioluminescence in whole cell biosensors. Biosens. Bioelectron. 2009;24:1969–1973. PubMed
Xu Z.H., Mulchandani A., Chen W. Detection of benzene, toluene, ethyl benzene, and xylenes (btex) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol. Prog. 2003;19:1812–1815. PubMed
Tzoris A., Fernandez-Perez V., Hall E.A.H. Direct toxicity assessment with a mini portable respirometer. Sens. Actuat. B Chem. 2005;105:39–49.
Aivasidis A., Melidis P., Georgiou D. Use of a microbial sensor: A new approach to the measurement of inhibitory effects on the microbial activity of activated sludge. Bioprocess. Biosyst. Eng. 2002;25:29–33. PubMed
Lei Y., Chen W., Mulchandani A. Microbial biosensors. Anal. Chim. Acta. 2006;568:200–210. PubMed
Venugopal V. Biosensors in fish production and quality control. Biosens. Bioelectron. 2002;17:147–157. PubMed
Krizkova S., Ryant P., Krystofova O., Adam V., Galiova M., Beklova M., Babula P., Kaiser J., Novotny K., Novotny J., et al. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions—Plants as bioindicators of environmental pollution. Sensors. 2008;8:445–463. PubMed PMC
Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.
Olaniran A.O., Motebejane R.M., Pillay B. Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. J. Environ. Monit. 2008;10:889–893. PubMed
Busam S., McNabb M., Wackwitz A., Senevirathna W., Beggah S., van der Meer J.R., Wells M., Breuer U., Harms H. Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry. Anal. Chem. 2007;79:9107–9114. PubMed
Hassler C.S., Twiss M.R., McKay R.M.L., Bullerjahn G.S. Optimization of iron-dependent cyanobacterial (synechococcus, cyanophyceae) bioreporters to measure iron bioavailability. J. Phycol. 2006;42:324–335.
Nivens D.E., McKnight T.E., Moser S.A., Osbourn S.J., Simpson M.L., Sayler G.S. Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 2004;96:33–46. PubMed
Islam S.K., Weathers B., Terry S.C., Zhang M., Blalock B., Caylor S., Ripp S., Sayler G.S. Genetically-engineered whole-cell bioreporters on integrated circuits for very low-level chemical sensing. In: Ghibaudo G., Skotnicki T., Cristoloveanu S., Brillouet M., editors. Proceedings of the 35th European Solid-State Device Research Conference, ESSDERC ’05; Grenoble, France. 12–16 September 2005; New York, NY, USA: IEEE; 2005. pp. 351–354.
Bolton E.K., Sayler G.S., Nivens D.E., Rochelle J.M., Ripp S., Simpson M.L. Integrated cmos photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens. Actuat. B Chem. 2002;85:179–185. PubMed
Trogl J., Kuncova G., Kubicova L., Parik P., Halova J., Demnerova K., Ripp S., Sayler G.S. Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol. 2007;52:3–14. PubMed
Hansen T.H., Laursen K.H., Persson D.P., Pedas P., Husted S., Schjoerring J.K. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods. 2009;5:12:1–12:11. PubMed PMC
Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., et al. Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci. 2011 in press.
Fabrik I., Krizkova S., Huska D., Adam V., Hubalek J., Trnkova L., Eckschlager T., Kukacka J., Prusa R., Kizek R. Employment of electrochemical techniques for metallothionein determination in tumour cell lines and patients with a tumor disease. Electroanalysis. 2008;20:1521–1532.
Adam V., Baloun J., Fabrik I., Trnkova L., Kizek R. An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors. 2008;8:2293–2305. PubMed PMC
Erk M., Ivankovic D., Raspor B., Pavicic J. Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta. 2002;57:1211–1218. PubMed
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. PubMed
Park H., Choung Y.K. Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathione S-transferase. Hum. Ecol. Risk Assess. 2007;13:1147–1155.
Adam V., Fabrik I., Kohoutkova V., Babula P., Hubalek J., Vrba R., Trnkova L., Kizek R. Automated electrochemical analyzer as a new tool for detection of thiols. Int. J. Electrochem. Sci. 2010;5:429–447.
Krystofova O., Trnkova L., Adam V., Zehnalek J., Hubalek J., Babula P., Kizek R. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. Sensors. 2010;10:5308–5328. PubMed PMC
Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512.
Diopan V., Stejskal K., Galiova M., Adam V., Kaiser J., Horna A., Novotny K., Liska M., Havel L., Zehnalek J., et al. Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(II) ions. Electroanalysis. 2010;22:1248–1259.
Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:A712–A724.
Causon R. Validation of chromatographic methods in biomedical analysis—Viewpoint and discussion. J. Chromatogr. B. 1997;689:175–180. PubMed
Bugianesi R., Serafini M., Simone F., Wu D.Y., Meydani S., Ferro-Luzzi A., Azzini E., Maiani G. High-performance liquid chromatography with coulometric electrode array detector for the determination of quercetin levels in cells of the immune system. Anal. Biochem. 2000;284:296–300. PubMed
Jagner D., Ma F., Wang Y.D. Rapid calibration-free determination of lead in microliter amounts of whole blood. Electroanalysis. 1996;8:952–954.
Puigdomenech I., Bergstrom U. Calculation of distribution coefficients for radionuclides in soils and sediments. Nucl. Saf. 1995;36:142–154.
Yarnitzky C.N. The use of recycled static mercury drop electrode for electroanalysis of heavy metals in industrial wastes. Rev. Anal. Chem. 2000;19:319–329.
Ghoneim M.M., Hassanein A.M., Hammam E., Beltagi A.M. Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in water samples by differential pulse stripping voltammetry at a hanging mercury drop electrode. Fresenius J. Anal. Chem. 2000;367:378–383. PubMed
Massidda O., Mingoia M., Fadda D., Whalen M.B., Montanari M.P., Varaldo P.E. Analysis of the beta-lactamase plasmid of borderline methicillin-susceptible Staphylococcus aureus: Focus on bla complex genes and cadmium resistance determinants cadD and cadX. Plasmid. 2006;55:114–127. PubMed
Cavaco L.M., Hasman H., Stegger M., Andersen P.S., Skov R., Fluit A.C., Ito T., Aarestrup F.M. Cloning and occurrence of czrc, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrob. Agents Chemother. 2010;54:3605–3608. PubMed PMC
Eckschlager T., Adam V., Hrabeta J., Figova K., Kizek R. Metallothioneins and cancer. Curr. Protein Pept. Sci. 2009;10:360–375. PubMed
Ryvolova M., Krizkova S., Adam V., Beklova M., Trnkova L., Hubalek J., Kizek R. Analytical methods for metallothionein detection. Curr. Anal. Chem. 2011;7:243–261.
Petrlova J., Potesil D., Mikelova R., Blastik O., Adam V., Trnkova L., Jelen F., Prusa R., Kukacka J., Kizek R. Attomole voltammetric determination of metallothionein. Electrochim. Acta. 2006;51:5112–5119.
Fabrik I., Kukacka J., Baloun J., Sotornik I., Adam V., Prusa R., Vajtr D., Babula P., Kizek R. Electrochemical investigation of strontium-metallothionein interactions—Analysis of serum and urine of patients with osteoporosis. Electroanalysis. 2009;21:650–656.
Huska D., Fabrik I., Baloun J., Adam V., Masarik M., Hubalek J., Vasku A., Trnkova L., Horna A., Zeman L., et al. Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors. 2009;9:1355–1369. PubMed PMC
Krizkova S., Blahova P., Nakielna J., Fabrik I., Adam V., Eckschlager T., Beklova M., Svobodova Z., Horak V., Kizek R. Comparison of metallothionein detection by using of Brdicka reaction and enzyme-linked immunosorbent assay employing chicken yolk antibodies. Electroanalysis. 2009;21:2575–2583.
Krizkova S., Fabrik I., Adam V., Kukacka J., Prusa R., Trnkova L., Strnadel J., Horak V., Kizek R. Effects of reduced glutathione, surface active agents and ionic strength on the detection of metallothioneins by using the Brdicka reaction. Electroanalysis. 2009;21:640–644.