Carborane-based carbonic anhydrase inhibitors: insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25309911
PubMed Central
PMC4189773
DOI
10.1155/2014/389869
Knihovny.cz E-zdroje
- MeSH
- glycin chemie MeSH
- inhibitory karboanhydras chemie farmakologie MeSH
- karboanhydrasy chemie MeSH
- katalytická doména MeSH
- krystalografie rentgenová MeSH
- kvantová teorie * MeSH
- lidé MeSH
- molekulární modely * MeSH
- sloučeniny boru chemie farmakologie MeSH
- substrátová specifita účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dodecaborate MeSH Prohlížeč
- glycin MeSH
- inhibitory karboanhydras MeSH
- karboanhydrasy MeSH
- sloučeniny boru MeSH
Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.
Zobrazit více v PubMed
Swietach P, Patiar S, Supuran CT, Harris AL, Vaughan-Jones RD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growths. The Journal of Biological Chemistry. 2009;284(30):20299–20310. PubMed PMC
McDonald PC, Winum J, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget. 2012;3(1):84–97. PubMed PMC
Lock FE, McDonald PC, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene. 2013;32(44):5210–5219. PubMed
Tafreshi NK, Lloyd MC, Bui MM, Gillies RJ, Morse DL. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. (Subcellular Biochemistry).Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. 2014;75:221–254. PubMed PMC
Monti SM, Supuran CT, de Simone G. Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013) Expert Opinion on Therapeutic Patents. 2013;23(6):737–749. PubMed
McKenna R, Supuran CT. Carbonic anhydrase inhibitors drug design. Subcellular Biochemistry. 2014;75:291–323. PubMed
Brynda J, Mader P, Sicha V, et al. Carborane-based carbonic anhydrase inhibitors. Angewandte Chemie International Edition in English. 2013;52:13760–13763. PubMed
Lipscomb WN. Boron Hydrides. New York, NY, USA: W.A. Benjamin; 1963.
Schleyer PR, Najafian K. Stability and three-dimensional aromaticity of closo-monocarbaborane anions, Cbn-1Hn −, and closo-dicarboranes, C2Bn-2Hn . Inorganic Chemistry. 1998;37(14):3454–3470. PubMed
Williams RE. In: The Borane , Carborane and Carbocation Continuum. Casanova J, editor. New York, NY, USA: John Wiley & Sons; 1997. pp. 3–57.
Valliant JF, Guenther KJ, King AS, et al. The medicinal chemistry of carboranes. Coordination Chemistry Reviews. 2002;232(1-2):173–230.
Lesnikowski ZJ. Boron units as pharmacophores—new applications and opportunities of boron cluster chemistry. Collection of Czechoslovak Chemical Communications. 2007;72(12):1646–1658.
Plešek J. Potential applications of the boron cluster compounds. Chemical Reviews. 1992;92(2):269–278.
Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and prediction of promiscuous aggregating inhibitors among known drugs. Journal of Medicinal Chemistry. 2003;46(21):4477–4486. PubMed
Sibrian-Vazquez M, Hao E, Jensen TJ, Vicente MGH. Enhanced cellular uptake with a cobaltacarborane-porphyrin-HIV-1 Tat 48-60 conjugate. Bioconjugate Chemistry. 2006;17(4):928–934. PubMed
Scholz M, Steinhagen M, Heiker JT, Beck-Sickinger AG, Hey-Hawkins E. Asborin Inhibits Aldo/Keto Reductase 1A1. ChemMedChem. 2011;6(1):89–93. PubMed
Issa F, Kassiou M, Rendina LM. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chemical Reviews. 2011;111(9):5701–5722. PubMed
Reynolds RC, Campbell SR, Fairchild RG, et al. Novel boron-containing, nonclassical antifolates: synthesis and preliminary biological and structural evaluation. Journal of Medicinal Chemistry. 2007;50(14):3283–3289. PubMed
Cigler P, Kozisek M, Rezacova P, et al. From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:15394–15399. PubMed PMC
Řezáčová P, Pokorná J, Brynda J, et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. Journal of Medicinal Chemistry. 2009;52(22):7132–7141. PubMed
Endo Y, Iijima T, Yamakoshi Y, et al. Potent estrogen agonists based on carborane as a hydrophobic skeletal structure: a new medicinal application of boron clusters. Chemistry & Biology. 2001;8(4):341–355. PubMed
Julius RL, Farha OK, Chiang J, Perry LJ, Hawthorne MF. Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(12):4808–4813. PubMed PMC
Fujii S, Masuno H, Taoda Y, et al. Boron cluster-based development of potent nonsecosteroidal vitamin D receptor ligands: direct observation of hydrophobic interaction between protein surface and carborane. Journal of the American Chemical Society. 2011;133(51):20933–20941. PubMed
Krishnamurthy VM, Kaufman GK, Urbach AR, et al. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chemical Reviews. 2008;108(3):946–1051. PubMed PMC
Raha K, Peters MB, Wang B, et al. The role of quantum mechanics in structure-based drug design. Drug Discovery Today. 2007;12(17-18):725–731. PubMed
Lepšík M, Řezáč J, Kolář M, Pecina A, Hobza P, Fanfrlík J. The semiempirical quantum mechanical scoring function for in silico drug design. ChemPlusChem. 2013;78:921–931. PubMed
Pecina A, Lepsik M, Rezac J, et al. QM/MM calculations reveal the different nature of the interaction of two carborane-based sulfamide inhibitors of human carbonic anhydrase II. The Journal of Physical Chemistry B. 2013;117:16096–16104. PubMed
Behnke CA, Le Trong I, Godden JW, et al. Atomic resolution studies of carbonic anhydrase II. Acta Crystallographica D: Biological Crystallography. 2010;66(5):616–627. PubMed PMC
Mueller U, Darowski N, Fuchs MR, et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. Journal of Synchrotron Radiation. 2012;19(3):442–449. PubMed PMC
Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallographica D. 2011;67(4):271–281. PubMed PMC
Evans P. Scaling and assessment of data quality. Acta Crystallographica Section D: Biological Crystallography. 2006;62(1):72–82. PubMed
Brunger AT. Free R value: a novel statistical quantity for assessing the accuracy of crystal strucutres. Nature. 1992;355(6359):472–475. PubMed
Lovell SC, Davis IW, Arendall WB, III, et al. Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins. 2003;50(3):437–450. PubMed
Gitto R, Agnello S, Ferro S, et al. Identification of 3,4-dihydroisoquinoline-2(1H)-sulfonamides as potent carbonic anhydrase inhibitors: synthesis, biological evaluation, and enzyme-ligand X-ray studies. Journal of Medicinal Chemistry. 2010;53(6):2401–2408. PubMed
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica D. 1997;53(3):240–255. PubMed
The CCP4 suite: programs for protein crystallography. Acta Crystallographica D. 1994;50:760–763. PubMed
Jurečka P, Černý J, Hobza P, Salahub DR. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry. 2007;28(2):555–569. PubMed
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Physical Chemistry Chemical Physics. 2005;7(18):3297–3305. PubMed
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: the program system turbomole. Chemical Physics Letters. 1989;162(3):165–169.
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallographica D: Biological Crystallography. 2004;60(12):2126–2132. PubMed
DeLano WL. The PyMOL Molecular Graphics System. San Carlos, Calif, USA: DeLano Scientific LLC; 2002. http://www.pymol.org.
Alterio V, Hilvo M, Di Fiore A, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(38):16233–16238. PubMed PMC
DeLano WL. The PymoL Molecular Graphics System. Palo Alto, Calif, USA: DeLano Scientific; 2002.
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. The Journal of Physical Chemistry. 1996;100(50):19357–19363.
Pecina A, Přenosil O, Fanfrlík J, et al. On the reliability of the corrected semiempirical quantum chemical method (PM6-DH2) for assigning the protonation states in HIV-1 protease/inhibitor complexes. Collection of Czechoslovak Chemical Communications. 2011;76(5):457–479.
Brahmkshatriya PS, Dobeš P, Fanfrlík J, et al. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-a]pyrimidines. Current Computer—Aided Drug Design. 2013;9(1):118–129. PubMed
Fanfrlík J, Kolář M, Kamlar M, et al. Modulation of aldose reductase inhibition by halogen bond tuning. ACS Chemical Biology. 2013;8:2484–2492. PubMed
Fanfrlík J, Brahmkshatriya PS, Řezáč J, et al. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. Journal of Physical Chemistry B. 2013;117:14973–14982. PubMed
Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81(8):3684–3690.
Case DA, Cheatham TE, III, Darden T, et al. The Amber biomolecular simulation programs. Journal of Computational Chemistry. 2005;26(16):1668–1688. PubMed PMC
Betts MJ, Sternberg MJE. An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Engineering. 1999;12(4):271–283. PubMed
Mader P, Brynda J, Gitto R, et al. Structural Basis for the Interaction between Carbonic Anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides. Journal of Medicinal Chemistry. 2011;54(7):2522–2526. PubMed