Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I) Ions - Plants as Bioindicators of Environmental Pollution

. 2008 Jan 24 ; 8 (1) : 445-463. [epub] 20080124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27879716

The aim of this work is to investigate sunflower plants response on stressinduced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5,and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such aslignified cell walls, it was possible to determine the changes of important shoot and rootstructures, mainly vascular bungles and development of secondary thickening. Thedifferences in vascular bundles organisation, parenchymatic pith development in the rootcentre and the reduction of phloem part of vascular bundles were well observable.Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cellsdeclined; rhizodermal cells early necrosed and were replaced by the cells of exodermis.Further we employed laser induced breakdown spectroscopy for determination of spatialdistribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainlyin near-root part of the sample. Moreover basic biochemical indicators of environmentalstress were investigated. The total content of proteins expressively decreased withincreasing silver(I) ions dose and the time of the treatment. As we compare the resultsobtained by protein analysis - the total protein contents in shoot as well as root parts - wecan assume on the transport of the proteins from the roots to shoots. This phenomenon canbe related with the cascade of processes connecting with photosynthesis. The secondbiochemical parameter, which we investigated, was urease activity. If we compared theactivity in treated plants with control, we found out that presence of silver(I) ions markedlyenhanced the activity of urease at all applied doses of this toxic metal. Finally we studiedthe effect of silver(I) ions on activity of urease in in vitro conditions.

Zobrazit více v PubMed

Galvez F., Hogstrand C., McGeer J.C., Wood C.M. The physiological effects of a biologically incorporated silver diet on rainbow trout (Oncorhynchus mykiss) Aquat. Toxicol. 2001;55:95–112. PubMed

Davis A., Drexler J.W., Ruby M.V., Nicholson A. Micromineralogy of Mine Wastes in Relation to Lead Bioavailability, Butte, Montana. Environ. Sci. Technol. 1993;27:1415–1425.

Hogstrand C., Wood C.M. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem. 1998;17:547–561.

Mann R.M., Ernste M.J., Bell R.A., Kramer J.R., Wood C.M. Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss) Environ. Toxicol. Chem. 2004;23:1204–1210. PubMed

Hogstrand C., Wood C.M. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: Implications for water quality criteria. Environ. Toxicol. Chem. 1998;17:547–561.

Gorsuch J.W., Klaine S.J. Toxicity and fate of silver in the environment. Environ. Toxicol. Chem. 1998;17:537–538.

Song Y.M., Lu X.L., Yang M.L., Zheng X.R. Study on the interaction of platinum(IV), gold(III) and silver(I) ions with DNA. Transit. Met. Chem. 2005;30:499–502.

Hossain Z., Huq F. Studies on the interaction between Ag+ and DNA. J. Inorg. Biochem. 2002;91:398–404. PubMed

Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88:1707–1719. PubMed

Zenk M.H. Heavy metal detoxification in higher plants - A review. Gene. 1996;179:21–30. PubMed

Hamer D.H. Metallothionein. Annu. Rev. Biochem. 1986;55:913–951. PubMed

Giordani T., Natali L., Maserti B.E., Taddei S., Cavallini A. Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol. 2000;123:1571–1581. PubMed PMC

Sochova I., Hofman J., Holoubek I. Using nematodes in soil ecotoxicology. Environ. Int. 2006;32:374–383. PubMed

Fichez R., Adjeroud M., Bozec Y.M., Breau L., Chancerelle Y., Chevillon C., Douillet P., Fernandez J.M., Frouin P., Kulbicki M., Moreton B., Ouillon S., Payri C., Perez T., Sasal P., Thebault J. A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems. Aquat. Living Resour. 2005;18:125–147.

Bebianno M.J., Geret F., Hoarau P., Serafim M.A., Coelho M.R., Gnassia-Barelli M., Romeo M. Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers. 2004;9:305–330. PubMed

Conti M.E., Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment - a review. Environ. Pollut. 2001;114:471–492. PubMed

McGeoch M.A. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. Cambridge Philosophic. Soc. 1998;73:181–201.

Leyval C., Turnau K., Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 1997;7:139–153.

Petrlova J., Krizkova S., Zitka O., Hubalek J., Prusa R., Adam V., Wang J., Beklova M., Sures B., Kizek R. Utilizing a chronopotentiometric sensor technique for metallothionein determination in fish tissues and their host parasites. Sens. Actuator B-Chem. 2007;127:112–119.

Lessire F., Delaunois A., Gustin P., Ansay M. Biomarkers and bioindicators in vertebrates: importance in evaluation of quality of an ecosystem. Ann. Med. Vet. 1997;141:281–290.

Kafka Z., Puncocharova J. Bioindicators in the environment monitoring. Chem. Listy. 2000;94:909–912.

Wyrobek A.J., Schmid T.E., Marchetti F. Cross-species sperm-FISH assays for chemical testing and assessing paternal risk for chromosomally abnormal pregnancies. Environ. Mol. Mutagen. 2005;45:271–283. PubMed

Sures B. Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol. 2004;20:170–177. PubMed

Purcell T.W., Peters J.J. Sources of silver in the environment. Environ. Toxicol. Chem. 1998;17:539–546.

Purcell T.W., Peters J.J. Historical impacts of environmental regulation of silver. Environ. Toxicol. Chem. 1999;18:3–8.

Saeki S., Kubota M., Asami T. Determination of silver in plants by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 1996;64:179–183.

Shamspur T., Mashhadizadeh M.H., Sheikhshoaie I. Flame atomic absorption spectrometric determination of silver ion after preconcentration on octadecyl silica membrane disk modified with bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a new Schiff base ligand. J. Anal. At. Spectrom. 2003;18:1407–1410.

Raoof J.B., Ojani R., Kiani A. Kinetic determination of silver ion by its perturbation on Belousov-Zhabotinskii oscillating chemical reaction using potentiometric method. Anal. Sci. 2004;20:883–886. PubMed

Safavi A., Iranpoor N., Saghir N. Directly silica bonded analytical reagents: synthesis of 2-mercaptobenzothiazole-silica gel and its application as a new sorbent for preconcentration and determination of silver ion using solid-phase extraction method. Sep. Purif. Technol. 2004;40:303–308.

Schildkraut D.E., Dao P.T., Twist J.P., Davis A.T., Robillard K.A. Determination of silver ions at sub microgram-per-liter levels using anodic square-wave stripping voltammetry. Environ. Toxicol. Chem. 1998;17:642–649.

Zhang S.B., Zhang X.J., Lin X.Q. An ethylenediaminetetraacetic acid modified carbon paste electrode for the determination of silver ion. Chin. J. Anal. Chem. 2002;30:745–747.

Guo S.X., Khoo S.B. Highly selective and sensitive determination of silver(I) at a poly(8-mercaptoquinoline) film modified glassy carbon electrode. Electroanalysis. 1999;11:891–898.

Ye X.Z., Yang Q.H., Wang Y., Li N.Q. Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta. 1998;47:1099–1106. PubMed

Wang J., Lu J.M., Farias P.A.M. Remote electrochemical monitoring of trace silver. Anal. Chim. Acta. 1996;318:151–157.

Mikelova R., Baloun J., Petrlova J., Adam V., Havel L., Petrek J., Horna A., Kizek R. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry. 2007;70:508–518. PubMed

Stejskal K., Krizkova S., Adam V., Sures B., Trnkova L., Zehnalek J., Hubalek J., Beklova M., Hanustiak P., Svobodova Z., Horna A., Kizek R. Bio-assessing of environmental pollution via monitoring of metallothionein level using electrochemical detection. IEEE Sens. J. 2007 in press.

Svancara I., Ogorevc B., Hocevar S.B., Vytras K. Perspectives of carbon paste electrodes in stripping potentiometry. Anal. Sci. 2002;18:301–305. PubMed

Svancara I., Ogorevc B., Novic M., Vytras K. Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode. Anal. Bioanal. Chem. 2002;372:795–800. PubMed

Barek J., Muck A., Wang J., Zima J. Study of voltammetric determination of carcinogenic 1-nitropyrene and 1-aminopyrene using a glassy carbon paste electrode. Sensors. 2004;4:47–57.

Svancara I., Kalcher K., Diewald W., Vytras K. Voltammetric determination of silver at ultratrace levels using a carbon paste electrode with improved surface characteristics. Electroanalysis. 1996;8:336–342.

Svancara I., Vytras K., Barek J., Zima J. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 2001;31:311–345.

Lawrence N.S., Deo R.P., Wang J. Biocatalytic carbon paste sensors based on a mediator pasting liquid. Anal. Chem. 2004;76:3735–3739. PubMed

Blaedel W.J., Wang J. Mixed Immobilized Enzyme-Porous Electrode Reactor. Anal. Chem. 1980;52:1426–1429.

Kizek R., Vacek J., Trnkova L., Klejdus B., Kuban V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy. 2003;97:1003–1006.

Masarik M., Kizek R., Kramer K.J., Billova S., Brazdova M., Vacek J., Bailey M., Jelen F., Howard J.A. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal. Chem. 2003;75:2663–2669. PubMed

Petrlova J., Masarik M., Potesil D., Adam V., Trnkova L., Kizek R. Zeptomole detection of streptavidin using carbon paste electrode and square wave voltammetry. Electroanalysis. 2007;19:1177–1182.

Berry W.J., Cantwell M.G., Edwards P.A., Serbst J.R., Hansen D.J. Predicting toxicity of sediments spiked with silver. Environ. Toxicol. Chem. 1999;18:40–48.

Bury N.R., McGeer J.C., Wood C.M. Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ. Toxicol. Chem. 1999;18:49–55.

Bury N.R., Galvez F., Wood C.M. Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: Comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem. 1999;18:56–62.

Bianchini A., Wood C.M. Mechanism of acute silver toxicity in Daphnia magna. Environ. Toxicol. Chem. 2003;22:1361–1367. PubMed

Bianchini A., Bowles K.C., Brauner C.J., Gorsuch J.W., Kramer J.R., Wood C.M. Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. part 2: Toxicity results. Environ. Toxicol. Chem. 2002;21:1294–1300. PubMed

Bianchini A., Grosell M., Gregory S.M., Wood C.M. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ. Sci. Technol. 2002;36:1763–1766. PubMed

Call D.J., Polkinghorne C.N., Markee T.P., Brooke L.T., Geiger D.L., Gorsuch J.W., Robillard K.A. Silver toxicity to Chironomus tentans in two freshwater sediments. Environ. Toxicol. Chem. 1999;18:30–39.

Karen D.J., Ownby D.R., Forsythe B.L., Bills T.P., La Point T.W., Cobb G.B., Klaine S.J. Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna) Environ. Toxicol. Chem. 1999;18:63–70.

Morgan T.P., Wood C.M. A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: Support for the acute silver biotic ligand model. Environ. Toxicol. Chem. 2004;23:1261–1267. PubMed

Ratte H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999;18:89–108.

Miziolek A.W., Palleschi V., Schecher I. Laser-Induced Breakdown Spectroscopy (LIBS) Cambridge University Press; 2006.

Buckley S.G. LIBS comes on strong. Laser Focus World. 2006;42:95–98.

Radziemski L.J., Loree T.R., Cremers D.A., Hoffman N.M. Time-Resolved Laser-Induced Breakdown Spectrometry of Aerosols. Anal. Chem. 1983;55:1246–1252.

Cremers D.A., Radziemski L.J. Detection of Chlorine and Fluorine in Air by Laser-Induced Breakdown Spectrometry. Anal. Chem. 1983;55:1252–1256.

Martin M.Z., Wullschleger S.D., Garten C.T., Palumbo A.V., Smith J.G. Elemental analysis of environmental and biological samples using laser-induced breakdown spectroscopy and pulsed Raman spectroscopy. J. Dispersion Sci. Technol. 2004;25:687–694.

Samek O., Lambert J., Hergenroder R., Liska M., Kaiser J., Novotny K., Kukhlevsky S. Femtosecond laser spectrochemical analysis of plant samples. Laser Phys. Lett. 2006;3:21–25.

Kaiser J., Samek O., Reale L., Liska M., Malina R., Ritucci A., Poma A., Tucci A., Flora F., Lai A., Mancini L., Tromba G., Zanini F., Faenov A., Pikuz T., Cinque G. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy. Microsc. Res. Tech. 2007;70:147–153. PubMed

Limpert E., Stahel W.A., Abbt M. Log-normal distributions across the sciences: Keys and clues. Bioscience. 2001;51:341–352.

Hubalek J., Hradecky J., Adam V., Krystofova O., Huska D., Masarik M., Trnkova L., Horna A., Klosova K., Adamek M., Zehnalek J., Kizek R. Spectrometric and voltammetric analysis of urease – Nickel nanoelectrode as an electrochemical sensor. Sensors. 2007;7:1238–1255.

Xu Z., Chen X., Qu X.H., Jia J.B., Dong S.J. Single-wall carbon nanotube-based voltammetric sensor and biosensor. Biosens. Bioelectron. 2004;20:579–584. PubMed

Witte C.P., Medina-Escobar N. In-gel detection of urease with nitroblue tetrazolium and quantification of the enzyme from different crop plants using the indophenol reaction. Anal. Biochem. 2001;290:102–107. PubMed

Petrek J., Vitecek J., Vlasinova H., Kizek R., Kramer K.J., Adam V., Klejdus B., Havel L. Application of computer imaging, stripping voltammetry and mass spectrometry for study of the effect of lead (Pb-EDTA) on growth and viability of early somatic embryos of Norway spruce (Picea abies /L./ Karst.) Anal. Bioanal. Chem. 2005;383:576–586. PubMed

Supalkova V., Beklova M., Baloun J., Singer C., Sures B., Adam V., Huska D., Pikula J., Rauscherova L., Havel L., Zehnalek J., Kizek R. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry. Bioelectrochemistry. 2007 in press. PubMed

Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–959.

Supalkova V., Petrek J., Baloun J., Adam V., Bartusek K., Trnkova L., Beklova M., Diopan V., Havel L., Kizek R. Multi-instrumental investigation of affecting of early somatic embryos of Spruce by cadmium(II) and lead(II) ions. Sensors. 2007;7:743–759.

Vitecek J., Adam V., Petrek J., Vacek J., Kizek R., Havel L. Esterases as a marker for the growth of BY-2 tobacco cells and early somatic embryos of the norway spruce. Plant. Cell. Tiss. Org. 2004;79:195–201.

Zitka O., Stejskal K., Kleckerova A., Adam V., Beklova M., Horna A., Havel L., Kizek R. Utilizing of electrochemical techniques for detection of biological samples. Chem. Listy. 2007;101:225–231.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Investigation into the effect of molds in grasses on their content of low molecular mass thiols

. 2012 Oct 24 ; 9 (11) : 3789-805. [epub] 20121024

Bio-sensing of cadmium(II) ions using Staphylococcus aureus

. 2011 ; 11 (11) : 10638-63. [epub] 20111108

Silver(I) ions ultrasensitive detection at carbon electrodes-analysis of waters, tobacco cells and fish tissues

. 2009 ; 9 (9) : 6934-50. [epub] 20090901

Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions

. 2009 ; 9 (7) : 5040-58. [epub] 20090625

Evaluation of cholinesterase activities during in vivo intoxication using an electrochemical sensor strip - correlation with intoxication symptoms

. 2009 ; 9 (5) : 3627-34. [epub] 20090514

Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection

. 2008 Nov 07 ; 8 (11) : 7097-7112. [epub] 20081107

Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology

. 2008 Oct 01 ; 8 (10) : 6125-6131. [epub] 20081001

Amperometric Sensor for Detection of Chloride Ions

. 2008 Sep 15 ; 8 (9) : 5619-5636. [epub] 20080915

Diagnosis of Intoxication by the Organophosphate VX: Comparison Between an Electrochemical Sensor and Ellman´s Photometric Method

. 2008 Sep 01 ; 8 (9) : 5229-5237. [epub] 20080901

Biomarkers of Contaminant Exposure in Chub (Leuciscus cephalus L.) - Biomonitoring of Major Rivers in the Czech Republic

. 2008 Apr 11 ; 8 (4) : 2589-2603. [epub] 20080411

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...