Investigation into the effect of molds in grasses on their content of low molecular mass thiols
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23202817
PubMed Central
PMC3524598
DOI
10.3390/ijerph9113789
PII: ijerph9113789
Knihovny.cz E-resources
- MeSH
- Fungi * MeSH
- Poaceae chemistry microbiology MeSH
- Molecular Weight MeSH
- Sulfhydryl Compounds analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sulfhydryl Compounds MeSH
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
See more in PubMed
Ryant P., Skladanka J. The effect of applications of various forms of sulfur on the yields and quality of grass forage. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2009;59:208–216.
Skladanka J., Nedelnik J., Adam V., Dolezal P., Moravcova H., Dohnal V. Forage as a primary source of mycotoxins in animal diets. Int. J. Environ. Res. Public Health. 2011;8:37–50. PubMed PMC
Barnes R.F., Nelson C.J., Moore K.J. Forages: The Science of Grassland Agriculture. 6th. Iowa State University Press; Iowa City, IA, USA: 2007. p. 791.
Malinowski D.P., Belesky D.P., Hill N.S., Baligar V.C., Fedders J.M. Influence of phosphorus on the growth and ergot alkaloid content of neotyphodium coenophialum-infected tall fescue (festuca arundinacea schreb.) Plant Soil. 1998;198:53–61. doi: 10.1023/A:1004279401196. DOI
Anderson M.E. Glutathione: An overview of biosynthesis and modulation. Chem.-Biol. Interact. 1998;112:1–14. doi: 10.1016/S0009-2797(97)00146-4. PubMed DOI
Asensi M., Sastre J., Pallardo F.V., Lloret A., Lehner M., Garcia-de-la Asuncion J., Vina J. Ratio of reduced to oxidized glutathione as indicator of oxidative stress status and DNA damage. Oxidants and Antioxidants, Pt A. 1999;299:267–276. doi: 10.1016/S0076-6879(99)99026-2. PubMed DOI
Garrido T., Mendoza J., Riveros R., Saez L. Acute and chronic effect of copper on levels of reduced and oxidized glutathione and nutrient uptake of tomato plants. J. Plant Nutr. Soil Sci. 2010;173:920–926. doi: 10.1002/jpln.200800306. DOI
Bielawski W., Joy K.W. Reduced and oxidized glutathione and glutathione-reductase activity in tissues of pisum-sativum. Planta. 1986;169:267–272. doi: 10.1007/BF00392324. PubMed DOI
Ogawa K. Glutathione-associated regulation of plant growth and stress responses. Antioxid. Redox Signal. 2005;7:973–981. doi: 10.1089/ars.2005.7.973. PubMed DOI
Paradiso A., Berardino R., de Pinto M.C., di Toppi L.S., Storelli M.M., Tommasi F., De Gara L. Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 2008;49:362–374. doi: 10.1093/pcp/pcn013. PubMed DOI
Meister A., Anderson M.E. Glutathione. Annu. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. PubMed DOI
McGovern J.J., Isselbacher K., Rose P.J., Grossman M.S. Observations on the glutathione (gsh) stability of red blood cells. AMA J. Dis. Child. 1958;96:502–502.
Manso C., Wroblewski F. Glutathione reductase activity in blood and body fluids. J. Clin. Invest. 1958;37:214–218. doi: 10.1172/JCI103600. PubMed DOI PMC
Pisciotta A.V., Daly M. Studies on agranulocytosis. 3. The reduced glutathione (gsh) content of leukocytes of normals and patients recovered from agranulocytosis. Blood. 1960;16:1572–1578. PubMed
Pisciotta A.V., Daly M. Reduced glutathione (gsh) content of leukocytes in various hematologic diseases. Blood. 1960;15:421–422. PubMed
Mullineaux P.M., Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res. 2005;86:459–474. doi: 10.1007/s11120-005-8811-8. PubMed DOI
Schneider A., Martini N., Rennenberg H. Reduced glutathione (gsh) transport into cultured tobacco cells. Plant Physiol. Biochem. 1992;30:29–38.
Herschbach C., Rennenberg H. Influence of glutathione (gsh) on net uptake of sulfate and sulfate transport in tobacco plants. J. Exp. Bot. 1994;45:1069–1076. doi: 10.1093/jxb/45.8.1069. DOI
Gelhaye E., Rouhier N., Jacquot J.P. Evidence for a subgroup of thioredoxin h that requires gsh/grx for its reduction. FEBS Lett. 2003;555:443–448. doi: 10.1016/S0014-5793(03)01301-2. PubMed DOI
Rausch T., Gromes R., Liedschulte V., Muller I., Bogs J., Galovic V., Wachter A. Novel insight into the regulation of gsh biosynthesis in higher plants. Plant Biol. 2007;9:565–572. doi: 10.1055/s-2007-965580. PubMed DOI
Liedschulte V., Wachter A., An Z.G., Rausch T. Exploiting plants for glutathione (gsh) production: Uncoupling gsh synthesis from cellular controls results in unprecedented gsh accumulation. Plant Biotechnol. J. 2010;8:807–820. doi: 10.1111/j.1467-7652.2010.00510.x. PubMed DOI
Suh M.C., Choi D., Liu J.R. Cadmium resistance in transgenic tobacco plants expressing the nicotiana glutinosa l. Metallothionein-like gene. Mol. Cells. 1998;8:678–684. PubMed
Liu J.Y., Lu T., Zhao N.M. Classification and nomenclature of plant metallothionein-like proteins based on their cysteine arrangement patterns. Acta Bot. Sinica. 2000;42:649–652.
He H.Z., Zhu C.M., Lu T., Zhang R.Q., Zhao N.M., Liu J.Y. Modeling the cysteine rich domain of plant metallothionein-like protein. Acta Bot. Sinica. 2002;44:1155–1159.
Lu T., Liu J.Y., Zhang R.Q., Zhao N.M. Modeling rice rgmt as a plant metallothionein-like protein by the distance geometry and homology methods. Acta Bot. Sinica. 2003;45:1297–1306.
Plocke D.J. Cadmium-binding peptide complexes from schizosaccharomyces-pombe. Methods Enzymol. 1991;205:603–610. PubMed
Grill E., Gekeler W., Winnacker E.L., Zenk H.H. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing fabales. FEBS Lett. 1986;205:47–50. doi: 10.1016/0014-5793(86)80863-8. DOI
Rauser W.E. Phytochelatins. Annu. Rev. Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. PubMed DOI
Cobbett C.S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 2000;3:211–216. PubMed
Cobbett C.S. Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. IUBMB Life. 2001;51:183–188. doi: 10.1080/152165401753544250. PubMed DOI
Cobbett C., Goldsbrough P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002;53:159–182. doi: 10.1146/annurev.arplant.53.100301.135154. PubMed DOI
Pal R., Rai J.P.N. Phytochelatins: Peptides involved in heavy metal detoxification. Appl. Biochem. Biotechnol. 2010;160:945–963. doi: 10.1007/s12010-009-8565-4. PubMed DOI
Diopan V., Shestivska V., Adam V., Macek T., Mackova M., Havel L., Kizek R. Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell Tissue Organ Cult. 2008;94:291–298. doi: 10.1007/s11240-008-9356-2. DOI
Janouskova M., Pavlikova D., Macek T., Vosatka M. Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene. Appl. Soil Ecol. 2005;29:209–214. doi: 10.1016/j.apsoil.2004.12.006. DOI
Janouskova M., Pavlikova D., Macek T., Vosatka M. Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil. 2005;272:29–40.
Kotrba P., Macek T., Ruml T. Heavy metal-binding peptides and proteins in plants. A review. Collect. Czech. Chem. Commun. 1999;64:1057–1086. doi: 10.1135/cccc19991057. DOI
Macek T., Mackova M., Pavlikova D., Szakova J., Truksa M., Cundy S., Kotrba P., Yancey N., Scouten W.H. Accumulation of cadmium by transgenic tobacco. Acta Biotechnol. 2002;22:101–106. doi: 10.1002/1521-3846(200205)22:1/2<101::AID-ABIO101>3.0.CO;2-N. DOI
Macek T., Mackova M., Truksa M., Cundy A.S., Kotrba P., Yancey N., Schouten W.H. Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem. Listy. 1996;90:690–690.
Pavlikova D., Macek T., Mackova M., Sura M., Szakova J., Tlustos P. The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 2004;50:513–517.
Shestivska V., Adam V., Prasek J., Macek T., Mackova M., Havel L., Diopan V., Zehnalek J., Hubalek J., Kizek R. Investigation of the antioxidant properties of metallothionein in transgenic tobacco plants using voltammetry at a carbon paste electrode. Int. J. Electrochem. Sci. 2011;6:2869–2883.
Supalkova V., Petrek J., Baloun J., Adam V., Bartusek K., Trnkova L., Beklova M., Diopan V., Havel L., Kizek R. Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(ii) and lead(ii) ions. Sensors. 2007;7:743–759.
Diopan V., Stejskal K., Galiova M., Adam V., Kaiser J., Horna A., Novotny K., Liska M., Havel L., Zehnalek J., et al. Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(ii) ions. Electroanalysis. 2010;22:1248–1259. doi: 10.1002/elan.200900374. DOI
Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (zea mays l.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI
Petrlova J., Mikelova R., Stejskal K., Kleckerova A., Zitka O., Petrek J., Havel L., Zehnalek J., Adam V., Trnkova L., et al. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with coul-array detection. J. Sep. Sci. 2006;29:1166–1173. PubMed
Zitka O., Krystofova O., Sobrova P., Adam V., Zehnalek J., Beklova M., Kizek R. Phytochelatin synthase activity as a marker of metal pollution. J. Hazard. Mater. 2011;192:794–800. doi: 10.1016/j.jhazmat.2011.05.088. PubMed DOI
Zitka O., Skutkova H., Krystofova O., Sobrova P., Adam V., Zehnalek J., Havel L., Beklova M., Hubalek J., Provaznik I., et al. Rapid and ultrasensitive method for determination of phytochelatin(2) using high performance liquid chromatography with electrochemical detection. Int. J. Electrochem. Sci. 2011;6:1367–1381.
Studer B., Boller B., Bauer E., Posselt U.K., Widmer F., Kolliker R. Consistent detection of qtls for crown rust resistance in italian ryegrass (lolium multiflorum lam.) across environments and phenotyping methods. Theor. Appl. Genet. 2007;115:9–17. doi: 10.1007/s00122-007-0535-z. PubMed DOI
Kleckerova A., Sobrova P., Krystofova O., Sochor J., Zitka O., Babula P., Adam V., Docekalova H., Kizek R. Cadmium(ii) and zinc(ii) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int. J. Electrochem. Sci. 2011;6:6011–6031.
Krizkova S., Krystofova O., Trnkova L., Hubalek J., Adam V., Beklova M., Horna A., Havel L., Kizek R. Silver(i) ions ultrasensitive detection at carbon electrodes—Analysis of waters, tobacco cells and fish tissues. Sensors. 2009;9:6934–6950. doi: 10.3390/s90906934. PubMed DOI PMC
Krizkova S., Ryant P., Krystofova O., Adam V., Galiova M., Beklova M., Babula P., Kaiser J., Novotny K., Novotny J. Multi-instrumental analysis of tissues of sunflower plants treated with silver(i) ions—Plants as bioindicators of environmental pollution. Sensors. 2008;8:445–463. PubMed PMC
Krystofova O., Shestivska V., Galiova M., Novotny K., Kaiser J., Zehnalek J., Babula P., Opatrilova R., Adam V., Kizek R. Sunflower plants as bioindicators of environmental pollution with lead(ii) ions. Sensors. 2009;9:5040–5058. PubMed PMC
Krystofova O., Trnkova L., Adam V., Zehnalek J., Hubalek J., Babula P., Kizek R. Electrochemical microsensors for the detection of cadmium(ii) and lead(ii) ions in plants. Sensors. 2010;10:5308–5328. doi: 10.3390/s100605308. PubMed DOI PMC
Memon A.R., Schroder P. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 2009;16:162–175. doi: 10.1007/s11356-008-0079-z. PubMed DOI
Verkleij J.A.C., Golan-Goldhirsh A., Antosiewisz D.M., Schwitzguebel J.P., Schroder P. Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ. Exp. Bot. 2009;67:10–22. doi: 10.1016/j.envexpbot.2009.05.009. DOI
Abhilash P.C., Jamil S., Singh N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv. 2009;27:474–488. doi: 10.1016/j.biotechadv.2009.04.002. PubMed DOI
Lyubenova L., Schroder P. Plants for waste water treatment—Effects of heavy metals on the detoxification system of typha latifolia. Bioresour. Technol. 2011;102:996–1004. doi: 10.1016/j.biortech.2010.09.072. PubMed DOI
Zhang Y.Y., Liu J.H. Transgenic alfalfa plants co-expressing glutathione s-transferase (gst) and human cyp2e1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J. Hazard. Mater. 2011;189:357–362. doi: 10.1016/j.jhazmat.2011.02.042. PubMed DOI
Grossmann K., Retzlaff G. Bioregulatory effects of the fungicidal strobilurin kresoxim-methyl in wheat (triticum aestivum) Pestic. Sci. 1997;50:11–20. doi: 10.1002/(SICI)1096-9063(199705)50:1<11::AID-PS556>3.0.CO;2-8. DOI
Glaab J., Kaiser W.M. Increased nitrate reductase activity in leaf tissue after application of the fungicide kresoxim-methyl. Planta. 1999;207:442–448. doi: 10.1007/s004250050503. DOI
Grossmann K., Kwiatkowski J., Casper G. Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (triticum aestivum) J. Plant Physiol. 1999;154:805–808. doi: 10.1016/S0176-1617(99)80262-4. DOI
Nason M.A., Farrar J., Bartlett D. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Pest Manag. Sci. 2007;63:1191–1200. doi: 10.1002/ps.1443. PubMed DOI
Wu Y.X., von Tiedemann A. Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pest. Biochem. Physiol. 2001;71:1–10. doi: 10.1006/pest.2001.2561. DOI
Wu Y.X., von Tiedemann A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (hordeum vulgare l.) exposed to ozone. Environ. Pollut. 2002;116:37–47. doi: 10.1016/S0269-7491(01)00174-9. PubMed DOI
Fernandez-Ortuno D., Tores J.A., De Vicente A., Perez-Garcia A. Mechanisms of resistance to qol fungicides in phytopathogenic fungi. Int. Microbiol. 2008;11:1–9. PubMed
Mari M., Morales A., Colell A., Garcia-Ruiz C., Fernandez-Checa J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 2009;11:2685–2700. doi: 10.1089/ars.2009.2695. PubMed DOI PMC
Giesler L.J., Yuen G.Y., Horst G.L. The microclimate in tall fescue turf as affected by canopy density and its influence on brown patch disease. Plant Dis. 1996;80:389–394. doi: 10.1094/PD-80-0389. DOI
von Boberfeld W.O., Banzhaf K. Yield and forage quality of different xfestulolium cultivars in winter. J. Agron. Crop Sci. 2006;192:239–247. doi: 10.1111/j.1439-037X.2006.00214.x. DOI
Becana M., Matamoros M.A., Udvardi M., Dalton D.A. Recent insights into antioxidant defenses of legume root nodules. New Phytol. 2010;188:960–976. doi: 10.1111/j.1469-8137.2010.03512.x. PubMed DOI
Shen G.M., Zhu C., Shangguan L.N., Du Q.Z. The cd-tolerant rice mutant cadh-5 is a high cd accumulator and shows enhanced antioxidant activity. J. Plant Nutr. Soil Sci. 2012;175:309–318. doi: 10.1002/jpln.201000310. DOI
Raab A., Feldmann J., Meharg A.A. The nature of arsenic-phytochelatin complexes in holcus lanatus and pteris cretica. Plant Physiol. 2004;134:1113–1122. doi: 10.1104/pp.103.033506. PubMed DOI PMC
Hunaiti A.A., Al-Oqlah A., Shannag N.M., Abukhalaf I.K., Silvestrov N.A., von Deutsch D.A., Bayorh M.A. Toward understanding the influence of soil metals and sullfate content on plant thiols. J. Toxicol. Env. Health Part A. 2007;70:559–567. doi: 10.1080/15287390600882309. PubMed DOI
Jia Y., Tang S.R., Wang R.G., Ju X.H., Ding Y.Z., Tu S.X., Smith D.L. Effects of elevated co2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in lolium mutiforum and lolium perenne under cd stress. J. Hazard. Mater. 2010;180:384–394. doi: 10.1016/j.jhazmat.2010.04.043. PubMed DOI
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., et al. Electroanalysis of plant thiols. Sensors. 2007;7:932–959. doi: 10.3390/s7060932. DOI
Platinum nanoparticles induce damage to DNA and inhibit DNA replication