Ion exchange chromatography and mass spectrometric methods for analysis of cadmium-phytochelatin (II) complexes

. 2013 Mar 28 ; 10 (4) : 1304-11. [epub] 20130328

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23538727

In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL(-1) PC2 and 100 µg·mL(-1) of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes.

Zobrazit více v PubMed

Rauser W.E. Phytochelatins and related peptides—Structure, biosynthesis, and function. Plant Physiol. 1995;109:1141–1149. PubMed PMC

Cobbett C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000;123:825–832. doi: 10.1104/pp.123.3.825. PubMed DOI PMC

Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI

Cruz B.H., Diaz-Cruz J.M., Sestakova I., Velek J., Arino C., Esteban M. Differential pulse voltammetric study of the complexation of Cd(II) by the phytochelatin (gamma-Glu-Cys)(2)Gly assisted by multivariate curve resolution. J. Electroanal. Chem. 2002;520:111–118. doi: 10.1016/S0022-0728(02)00640-X. DOI

Gekeler W., Grill E., Winnacker E.L., Zenk M.H. Algae sequester heavy-metals via synthesis of phytochelatin complexes. Arch. Microbiol. 1988;150:197–202. doi: 10.1007/BF00425162. DOI

Grill E., Loffler S., Winnacker E.L., Zenk M.H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) Proc. Natl. Acad. Sci. USA. 1989;86:6838–6842. PubMed PMC

Leopold I., Gunter D., Neumann D. Application of high performance liquid chromatography—Inductively coupled plasma mass spectrometry to the investigation of phytochelatin complexes and their role in heavy metal detoxification in plants. Analusis. 1998;26:M28–M32.

Krystofova O., Adam V., Babula P., Zehnalek J., Beklova M., Havel L., Kizek R. Effects of various doses of selenite on stinging nettle (Urtica dioica L.) Int. J. Environ. Res. Public Health. 2010;7:3804–3815. doi: 10.3390/ijerph7103804. PubMed DOI PMC

Skladanka J., Adam V., Zitka O., Krystofova O., Beklova M., Kizek R., Havlicek Z., Slama P., Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. Int. J. Environ. Res. Public Health. 2012;9:3789–3805. doi: 10.3390/ijerph9113789. PubMed DOI PMC

Miller G., Begonia G., Begonia M.F.T. Selected morphological characteristics, lead uptake and phytochelatin synthesis by coffeeweed (Sesbania exaltata Raf.) grown in elevated levels of lead-contaminated soil. Int. J. Environ. Res. Public Health. 2011;8:2401–2417. doi: 10.3390/ijerph8062401. PubMed DOI PMC

Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI

Petrlova J., Mikelova R., Stejskal K., Kleckerova A., Zitka O., Petrek J., Havel L., Zehnalek J., Adam V., Trnkova L., et al. Simultaneous determination of eight biologically active thiol compounds using gradient elution-Liquid Chromatography with Coul-Array detection. J. Sep. Sci. 2006;29:1166–1173. doi: 10.1002/jssc.200500425. PubMed DOI

Diopan V., Stejskal K., Galiova M., Adam V., Kaiser J., Horna A., Novotny K., Liska M., Havel L., Zehnalek J., et al. Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(II) ions. Electroanalysis. 2010;22:1248–1259. doi: 10.1002/elan.200900374. DOI

Zitka O., Krystofova O., Sobrova P., Adam V., Zehnalek J., Beklova M., Kizek R. Phytochelatin synthase activity as a marker of metal pollution. J. Hazard. Mater. 2011;192:794–800. doi: 10.1016/j.jhazmat.2011.05.088. PubMed DOI

Zitka O., Merlos M.A., Adam V., Ferrol N., Pohanka M., Hubalek J., Zehnalek J., Trnkova L., Kizek R. Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues. J. Hazard. Mater. 2012;203:257–263. doi: 10.1016/j.jhazmat.2011.12.018. PubMed DOI

Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., et al. Electroanalysis of plant thiols. Sensors. 2007;7:932–959. doi: 10.3390/s7060932. DOI

Zitka O., Skutkova H., Krystofova O., Sobrova P., Adam V., Zehnalek J., Havel L., Beklova M., Hubalek J., Provaznik I., et al. Rapid and ultrasensitive method for determination of phytochelatin(2) using high performance liquid chromatography with electrochemical detection. Int. J. Electrochem. Sci. 2011;6:1367–1381.

Jaeckel P., Krauss G., Menge S., Schierhorn A., Rucknagel P., Krauss G.J. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem. Biophys. Res. Commun. 2005;333:150–155. doi: 10.1016/j.bbrc.2005.05.083. PubMed DOI

Cavanillas S., Gusmao R., Arino C., Diaz-Cruz J.M., Esteban M. Voltammetric analysis of phytochelatin complexation in ternary metal mixtures supported by multivariate analysis and ESI-MS. Electroanalysis. 2012;24:309–315. doi: 10.1002/elan.201100578. DOI

Chen L.Q., Guo Y.F., Yang L.M., Wang Q.Q. SEC-ICP-MS and ESI-MS/MS for analyzing in vitro and in vivo Cd-phytochelatin complexes in a Cd-hyperaccumulator Brassica chinensis. J. Anal. At. Spectrom. 2007;22:1403–1408. doi: 10.1039/b707830g. DOI

Najmanova J., Neumannova E., Leonhardt T., Zitka O., Kizek R., Macek T., Mackova M., Kotrba P. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind. Crop. Prod. 2012;36:536–542. doi: 10.1016/j.indcrop.2011.11.008. DOI

Raab A., Feldmann J., Meharg A.A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol. 2004;134:1113–1122. doi: 10.1104/pp.103.033506. PubMed DOI PMC

Rigas P.G. Review: Liquid chromatography-post-column derivatization for amino acid analysis: Strategies, instrumentation, and applications. Instrum. Sci. Technol. 2012;40:161–193. doi: 10.1080/10739149.2011.651669. DOI

Li-Chan E.C.Y., Sultanbawa F., Losso J.N., Oomah B.D., Mazza G. Characterization of phytochelatin-like complexes from flax (Linum usitatissimum) seed. J. Food Biochem. 2002;26:271–293.

Nejdl L., Sochor J., Zitka O., Cernei N., Ruttkay-Nedecky B., Kopel P., Babula P., Adam V., Hubalek J., Kizek R. Spectrometric and chromatographic study of reactive oxidants hypochlorous and hypobromous acids and their interactions with taurine. Chromatographia. 2013 in press.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace