Ion exchange chromatography and mass spectrometric methods for analysis of cadmium-phytochelatin (II) complexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23538727
PubMed Central
PMC3709318
DOI
10.3390/ijerph10041304
PII: ijerph10041304
Knihovny.cz E-zdroje
- MeSH
- chromatografie iontoměničová metody MeSH
- fytochelatiny chemie MeSH
- kadmium chemie MeSH
- látky znečišťující životní prostředí chemie MeSH
- monitorování životního prostředí metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fytochelatiny MeSH
- kadmium MeSH
- látky znečišťující životní prostředí MeSH
In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL(-1) PC2 and 100 µg·mL(-1) of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes.
Zobrazit více v PubMed
Rauser W.E. Phytochelatins and related peptides—Structure, biosynthesis, and function. Plant Physiol. 1995;109:1141–1149. PubMed PMC
Cobbett C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000;123:825–832. doi: 10.1104/pp.123.3.825. PubMed DOI PMC
Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI
Cruz B.H., Diaz-Cruz J.M., Sestakova I., Velek J., Arino C., Esteban M. Differential pulse voltammetric study of the complexation of Cd(II) by the phytochelatin (gamma-Glu-Cys)(2)Gly assisted by multivariate curve resolution. J. Electroanal. Chem. 2002;520:111–118. doi: 10.1016/S0022-0728(02)00640-X. DOI
Gekeler W., Grill E., Winnacker E.L., Zenk M.H. Algae sequester heavy-metals via synthesis of phytochelatin complexes. Arch. Microbiol. 1988;150:197–202. doi: 10.1007/BF00425162. DOI
Grill E., Loffler S., Winnacker E.L., Zenk M.H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) Proc. Natl. Acad. Sci. USA. 1989;86:6838–6842. PubMed PMC
Leopold I., Gunter D., Neumann D. Application of high performance liquid chromatography—Inductively coupled plasma mass spectrometry to the investigation of phytochelatin complexes and their role in heavy metal detoxification in plants. Analusis. 1998;26:M28–M32.
Krystofova O., Adam V., Babula P., Zehnalek J., Beklova M., Havel L., Kizek R. Effects of various doses of selenite on stinging nettle (Urtica dioica L.) Int. J. Environ. Res. Public Health. 2010;7:3804–3815. doi: 10.3390/ijerph7103804. PubMed DOI PMC
Skladanka J., Adam V., Zitka O., Krystofova O., Beklova M., Kizek R., Havlicek Z., Slama P., Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. Int. J. Environ. Res. Public Health. 2012;9:3789–3805. doi: 10.3390/ijerph9113789. PubMed DOI PMC
Miller G., Begonia G., Begonia M.F.T. Selected morphological characteristics, lead uptake and phytochelatin synthesis by coffeeweed (Sesbania exaltata Raf.) grown in elevated levels of lead-contaminated soil. Int. J. Environ. Res. Public Health. 2011;8:2401–2417. doi: 10.3390/ijerph8062401. PubMed DOI PMC
Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. doi: 10.1016/j.chroma.2005.06.019. PubMed DOI
Petrlova J., Mikelova R., Stejskal K., Kleckerova A., Zitka O., Petrek J., Havel L., Zehnalek J., Adam V., Trnkova L., et al. Simultaneous determination of eight biologically active thiol compounds using gradient elution-Liquid Chromatography with Coul-Array detection. J. Sep. Sci. 2006;29:1166–1173. doi: 10.1002/jssc.200500425. PubMed DOI
Diopan V., Stejskal K., Galiova M., Adam V., Kaiser J., Horna A., Novotny K., Liska M., Havel L., Zehnalek J., et al. Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(II) ions. Electroanalysis. 2010;22:1248–1259. doi: 10.1002/elan.200900374. DOI
Zitka O., Krystofova O., Sobrova P., Adam V., Zehnalek J., Beklova M., Kizek R. Phytochelatin synthase activity as a marker of metal pollution. J. Hazard. Mater. 2011;192:794–800. doi: 10.1016/j.jhazmat.2011.05.088. PubMed DOI
Zitka O., Merlos M.A., Adam V., Ferrol N., Pohanka M., Hubalek J., Zehnalek J., Trnkova L., Kizek R. Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues. J. Hazard. Mater. 2012;203:257–263. doi: 10.1016/j.jhazmat.2011.12.018. PubMed DOI
Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., et al. Electroanalysis of plant thiols. Sensors. 2007;7:932–959. doi: 10.3390/s7060932. DOI
Zitka O., Skutkova H., Krystofova O., Sobrova P., Adam V., Zehnalek J., Havel L., Beklova M., Hubalek J., Provaznik I., et al. Rapid and ultrasensitive method for determination of phytochelatin(2) using high performance liquid chromatography with electrochemical detection. Int. J. Electrochem. Sci. 2011;6:1367–1381.
Jaeckel P., Krauss G., Menge S., Schierhorn A., Rucknagel P., Krauss G.J. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem. Biophys. Res. Commun. 2005;333:150–155. doi: 10.1016/j.bbrc.2005.05.083. PubMed DOI
Cavanillas S., Gusmao R., Arino C., Diaz-Cruz J.M., Esteban M. Voltammetric analysis of phytochelatin complexation in ternary metal mixtures supported by multivariate analysis and ESI-MS. Electroanalysis. 2012;24:309–315. doi: 10.1002/elan.201100578. DOI
Chen L.Q., Guo Y.F., Yang L.M., Wang Q.Q. SEC-ICP-MS and ESI-MS/MS for analyzing in vitro and in vivo Cd-phytochelatin complexes in a Cd-hyperaccumulator Brassica chinensis. J. Anal. At. Spectrom. 2007;22:1403–1408. doi: 10.1039/b707830g. DOI
Najmanova J., Neumannova E., Leonhardt T., Zitka O., Kizek R., Macek T., Mackova M., Kotrba P. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind. Crop. Prod. 2012;36:536–542. doi: 10.1016/j.indcrop.2011.11.008. DOI
Raab A., Feldmann J., Meharg A.A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol. 2004;134:1113–1122. doi: 10.1104/pp.103.033506. PubMed DOI PMC
Rigas P.G. Review: Liquid chromatography-post-column derivatization for amino acid analysis: Strategies, instrumentation, and applications. Instrum. Sci. Technol. 2012;40:161–193. doi: 10.1080/10739149.2011.651669. DOI
Li-Chan E.C.Y., Sultanbawa F., Losso J.N., Oomah B.D., Mazza G. Characterization of phytochelatin-like complexes from flax (Linum usitatissimum) seed. J. Food Biochem. 2002;26:271–293.
Nejdl L., Sochor J., Zitka O., Cernei N., Ruttkay-Nedecky B., Kopel P., Babula P., Adam V., Hubalek J., Kizek R. Spectrometric and chromatographic study of reactive oxidants hypochlorous and hypobromous acids and their interactions with taurine. Chromatographia. 2013 in press.