Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions

. 2009 ; 9 (7) : 5040-58. [epub] 20090625

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22346686

In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.

Zobrazit více v PubMed

Macek T., Kotrba P., Svatos A., Novakova M., Demnerova K., Mackova M. Novel roles for genetically modified plants in environmental protection. Trends Biotechnol. 2008;26:146–152. PubMed

Novakova M., Mackova M., Sylvestre M., Macek T. Preparation of genetically modified plants containing bacterial dioxygenase – Tool for preferable phytoremediation. J. Biotechnol. 2007;131:S36–S36.

Najmanova J., Mackova M., Macek T., Kotrba P. Preparation of transgenic flax with enhanced metal tolerance. J. Biotechnol. 2007;131:S38–S39.

Pavlikova D., Macek T., Mackova M., Sura M., Szakova J., Tlustos P. The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 2004;50:513–517.

Pavlikova D., Macek T., Mackova M., Szakova J., Balik J. Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int. Biodeterior. Biodegrad. 2004;54:233–237.

Macek T., Mackova M., Pavlikova D., Szakova J., Truksa M., Cundy S., Kotrba P., Yancey N., Scouten W.H. Accumulation of cadmium by transgenic tobacco. Acta Biotechnol. 2002;22:101–106.

Francova K., Macek T., Demnerova K., Mackova M. Transgenic plants – A potential tool for decontamination of environmental pollutants. Chem. Listy. 2001;95:630–637.

Garbisu C., Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001;77:229–236. PubMed

Salt D.E., Blaylock M., Kumar N., Dushenkov V., Ensley B.D., Chet I., Raskin I. Phytoremediation – A novel strategy for the removal of toxic metals from the environment using plants. Bio-Technology. 1995;13:468–474. PubMed

Fernandes J.C., Henriques F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 1991;57:246–273.

Li X.D., Poon C.S., Liu P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001;16:1361–1368.

Little P., Martin M.H. Biological monitoring of heavy-metal pollution. Environ. Pollut. 1974;6:1–19.

Jarup L. Hazards of heavy metal contamination. Br. Med. Bull. 2003;68:167–182. PubMed

Singh R.P., Tripathi R.D., Sinha S.K., Maheshwari R., Srivastava H.S. Response of higher plants to lead contaminated environment. Chemosphere. 1997;34:2467–2493. PubMed

Sawidis T. Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma. 2008;233:95–106. PubMed

Pandey S., Gupta K., Mukherjee A.K. Impact of cadmium and lead on Catharanthus roseus – A phytoremediation study. J. Environ. Biol. 2007;28:655–662. PubMed

Doumett S., Lamperi L., Checchini L., Azzarello E., Mugnai S., Mancuso S., Petruzzelli G., Bubba M. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere. 2008;72:1481–1490. PubMed

Malkowski E., Kita A., Galas W., Karcz W., Kuperberg J.M. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul. 2002;37:69–76.

Kaiser J., Malina R., Galiova M., Novotny K., Diopan V., Adam V., Kizek R. Employment of laser spectrometry in heavy metal analysis. Lis. Cukrov. Repar. 2007;123:332–332.

Stejskal K., Diopan V., Adam V., Zehnalek J., Trnkova L., Havel L., Galiova M., Malina R., Novotny K., Kaiser J., Kizek R. Study of effects of lead ions on sugar beet. Lis. Cukrov. Repar. 2008;124:116–119.

Stejskal K., Supalkova V., Baloun J., Diopan V., Babula P., Adam V., Zehnalek J., Trnkova L., Havel L., Kizek R. Affecting of sugar beet (Beta vulgaris var. Altissima) by lead chelate. Lis. Cukrov. Repar. 2007;123:351–355.

Krizkova S., Ryant P., Krystofova O., Adam V., Galiova M., Beklova M., Babula P., Kaiser J., Novotny K., Novotny J., Liska M., Malina R., Zehnalek J., Hubalek J., Havel L., Kizek R. Multi-instrumental analysis of tissues of sunflower plants treated with silver (I) ions – Plants as bioindicators of environmental pollution. Sensors. 2008;8:445–463. PubMed PMC

Supalkova V., Huska D., Diopan V., Hanustiak P., Zitka O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–959.

Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2005;1084:134–144. PubMed

Vacek J., Petrek J., Kizek R., Havel L., Klejdus B., Trnkova L., Jelen F. Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry. 2004;63:347–351. PubMed

Petrek J., Baloun J., Vlasinova H., Havel L., Adam V., Vitecek J., Babula P., Kizek R. Image analysis and activity of intracellular esterases as new analytical tools for determination of growth and viability of embryonic cultures of spruce (Picea sp.) treated with cadmium. Chem. Listy. 2007;101:569–577.

Zitka O., Stejskal K., Kleckerova A., Adam V., Beklova M., Horna A., Supalkova V., Havel L., Kizek R. Utilizing electrochemical techniques for detection of biological samples. Chem. Listy. 2007;101:225–231.

Petrlova J., Mikelova R., Stejskal K., Kleckerova A., Zitka O., Petrek J., Havel L., Zehnalek J., Adam V., Trnkova L., Kizek R. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection. J. Sep. Sci. 2006;29:1166–1173. PubMed

Supalkova V., Petrek J., Baloun J., Adam V., Bartusek K., Trnkova L., Beklova M., Diopan V., Havel L., Kizek R. Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium (II) and lead (II) ions. Sensors. 2007;7:743–759.

Ryant P., Dolezelova E., Fabrik I., Baloun J., Adam V., Babula P., Kizek R. Electrochemical determination of low molecular mass thiols content in potatoes (Solanum tuberosum) cultivated in the presence of various sulphur forms and infected by late blight (Phytophora infestans) Sensors. 2008;8:3165–3182. PubMed PMC

Lima P.R., Santos W.J.R., Oliveira A.B., Goulart M.O., Kubota L.T. Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the L-glutathione detection. J. Pharm. Biomed. Anal. 2008;47:758–764. PubMed

Gutscher M., Pauleau A.L., Marty L., Brach T., Wabnitz G.H., Samstag Y., Meyer A.J., Dick T.P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods. 2008;5:553–559. PubMed

Timur S., Odaci D., Dincer A., Zihnioglu F., Telefoncu A. Biosensing approach for glutathione detection using glutathione reductase and sulfhydryl oxidase bienzymatic system. Talanta. 2008;74:1492–1497. PubMed

Korn M.D.A., de Andrade J.B., de Jesus D.S., Lemos V.A., Bandeira M., dos Santos W.N.L., Bezerra M.A., Amorim F.A.C., Souza A.S., Ferreira S.L.C. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: a review. Talanta. 2006;69:16–24. PubMed

Korn M.D.A., dos Santos D.S.S., Welz B., Vale M.G.R., Teixeira A.P., Lima D.D., Ferreira S.L.C. Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels – a review. Talanta. 2007;73:1–11. PubMed

Lin T.J., Chung M.F. Using monoclonal antibody to determine lead ions with a localized surface plasmon resonance fiber-optic biosensor. Sensors. 2008;8:582–593. PubMed PMC

Shaw M.J., Haddad P.R. The determination of trace metal pollutants in enviromental matrices using ion chromatography. Environ. Int. 2004;30:403–431. PubMed

Yantasee W., Lin Y., Hongsirikarn K., Fryxell G.E., Addleman R., Timchalk C. Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ. Health Perspect. 2007;115:1683–1690. PubMed PMC

Janssens K.H.A., Adams F.C.V., Rindby A. X-ray fluorescence analysis. John Wiley & Sons; Chichester, UK: 2000.

Jorks S. X-ray microscopy. Instrumentation and biological application. Springer-Verlag; New York, NY, USA: 1987.

Kaiser J., Reale L., Ritucci A., Tomassetti G., Poma A., Spano L., Tucci A., Flora F., Lai A., Faenov A., Pikuz T., Mancini L., Tromba G., Zanini F. Mapping of the metal intake in plants by large-field X-ray microradiography and preliminary feasibility studies in microtomography. Eur. Phys. J. D. 2005;32:113–118.

Kaiser J., Samek O., Reale L., Liska M., Malina R., Ritucci A., Poma A., Tucci A., Flora F., Lai A., Mancini L., Tromba G., Zanini F., Faenov A., Pikuz T., Cinque G. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy. Microsc. Res. Tech. 2007;70:147–153. PubMed

Becker J.S., Su J., Zoriya M.V., Dobrowolska J., Matusch A. Imaging mass spectrometry in biological tissues by laser ablation inductively coupled plasma mass spectrometry. Eur. J. Mass Spectrom. 2007;13:1–6. PubMed

DeLucia F.C., Samuels A.C., Harmon R.S., Walters R.A., McNesby K.L., LaPointe A., Winkel R.J., Miziolek A.W. Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection. IEEE Sens. J. 2005;5:681–689.

Martin M.Z., Wullschleger S.D., Garten C.T., Palumbo A.V. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Appl. Optics. 2003;42:2072–2077. PubMed

Russo R.E., Mao X.L., Gonzalez J.J., Mao S.S. Femtosecond laser ablation ICP-MS. J. Anal. At. Spectrom. 2002;17:1072–1075.

Hubalek J., Hradecky J., Adam V., Krystofova O., Huska D., Masarik M., Trnkova L., Horna A., Klosova K., Adamek M., Zehnalek J., Kizek R. Spectrometric and voltammetric analysis of urease - nickel nanoelectrode as an electrochemical sensor. Sensors. 2007;7:1238–1255.

Petrek J., Vitecek J., Vlasinova H., Kizek R., Kramer K.J., Adam V., Klejdus B., Havel L. Application of computer imaging, stripping voltammetry and mass spectrometry to study the effect of lead (Pb-EDTA) on the growth and viability of early somatic embryos of Norway spruce (Picea abies/L./Karst.) Anal. Bioanal. Chem. 2005;383:576–586. PubMed

Vitecek J., Petrlova J., Petrek J., Adam V., Havel L., Kramer K.J., Kizek R. Application of fluorimetric analysis of plant esterases to study of programmed cell death and effects of cadmium (II) ions. Biol. Plant. 2007;51:551–555.

Vitecek J., Adam V., Petrek J., Vacek J., Kizek R., Havel L. Esterases as a marker for the growth of BY-2 tobacco cells and early somatic embryos of the norway spruce. Plant. Cell. Tiss. Org. 2004;79:195–201.

Vitecek J., Petrlova J., Adam V., Havel L., Kramer K.J., Babula P., Kizek R. A fluorimetric sensor for detection of one living cell. Sensors. 2007;7:222–238.

Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. PubMed

Noctor G., Foyer C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1998;49:249–279. PubMed

Adam V., Zehnalek J., Petrlova J., Potesil D., Sures B., Trnkova L., Jelen F., Vitecek J., Kizek R. Phytochelatin modified electrode surface as a sensitive heavy metal ion biosensor. Sensors. 2005;5:70–84.

Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behaviour in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.

Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.

Das A.K., de la Guardia M., Cervera M.L. Literature survey of on-line elemental speciation in aqueous solutions. Talanta. 2001;55:1–28. PubMed

Rizk N.M.H., Abbas S.S., Hamza S.M., El-Karem Y.M.A. Thiopental and phenytoin as novel ionophores for potentiometric determination of lead (II) ions. Sensors. 2009;9:1860–1875. PubMed PMC

Bondarenko O., Rolova T., Kahru A., Ivask A. Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors. 2008;8:6899–6923. PubMed PMC

Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512.

Galiova M., Kaiser J., Novotny K., Novotny J., Vaculovic T., Liska M., Malina R., Stejskal K., Adam V., Kizek R. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A-Mater. Sci. Process. 2008;93:917–922.

Kaiser J., Galiova M., Novotny K., Cervenka R., Reale L., Novotny J., Liska M., Samek O., Kanicky V., Hrdlicka A., Stejskal K., Adam V., Kizek R. Mapping of lead, magnesium and copper accumulation in plant tissues by Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta, Part B. 2009;64:67–73.

Kaiser J., Galiova M., Novotny K., Reale L., Stejskal K., Samek O., Malina R., Palenikova K., Adam V., Kizek R. Utilization of the Laser Induced Plasma Spectroscopy for monitoring of the metal accumulation in plant tissues with high spatial resolution. Formatex; Badajoz, Spain: 2007. pp. 434–441.

Witte C.P., Medina-Escobar N. In-gel detection of urease with nitroblue tetrazolium and quantification of the enzyme from different crop plants using the indophenol reaction. Anal. Biochem. 2001;290:102–107. PubMed

Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...