A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34443225
PubMed Central
PMC8398132
DOI
10.3390/ma14164702
PII: ma14164702
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, bioadsorbent, heavy metal, polymeric adsorbents, wastewater,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
Department of Chemistry DAV College Sector 10 Chandigarh 160011 India
Department of Chemistry MCM DAV College for Women Sector 36 Chandigarh 160036 India
Department of Physics National Institute of Technology Srinagar Srinagar 190006 India
Department of Production Engineering Warsaw University of Life Sciences 02 787 Warsaw Poland
Faculty of Business and Economics Mendel University in Brno 61300 Brno Czech Republic
Institute of Forensic Science and Criminology Panjab University Chandigarh 160014 India
Post Graduate Department of Chemistry TATA College Jharkhand Chaibasa 833202 India
Zobrazit více v PubMed
Vakili M., Rafatullah M., Salamatinia B., Abdullah A.Z., Ibrahim M.H., Tan K.B., Gholami Z., Amouzgar P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 2014;113:115–130. doi: 10.1016/j.carbpol.2014.07.007. PubMed DOI
Reddy D.H.K., Lee S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 2013;201:68–93. doi: 10.1016/j.cis.2013.10.002. PubMed DOI
Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014;7:60. doi: 10.2478/intox-2014-0009. PubMed DOI PMC
Luo C., Liu C., Wang Y., Liu X., Li F., Zhang G., Li X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011;186:481–490. doi: 10.1016/j.jhazmat.2010.11.024. PubMed DOI
Morais S., Costa F.G., Pereira M.D.L. Heavy metals and human health. Environ. Health Emerg. Issues Pract. 2012;10:227–245.
Escudero L.B., Quintas P.Y., Wuilloud R.G., Dotto G.L. Green Adsorbents for Pollutant Removal. Springer; Cham, Switzerland: 2018. Biosorption of metals and metalloids; pp. 35–86.
Jan A., Azam M., Siddiqui K., Ali A., Choi I., Haq Q. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015;16:29592–29630. doi: 10.3390/ijms161226183. PubMed DOI PMC
Bratjer K., Dabek-Zlotorzynska E. Separation of Metal Ions on a Modified Aluminum Oxide. Talanta. 1990;37:613. PubMed
Beauvais R.A., Alexandratos S.D. Polymer-supported reagents for the selective complexation of metal ions: An overview. React. Funct. Polym. 1998;36:113–123. doi: 10.1016/S1381-5148(98)00016-9. DOI
Cassidy H.G. Adsorption and Chromatography. Interscience Publishers; New York, NY, USA: 1951.
Kantipuly C., Katragadda S., Chow A., Gesser H.D. Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta. 1990;37:491–517. doi: 10.1016/0039-9140(90)80075-Q. PubMed DOI
Reed B.E., Lin W., Matsumoto M.R., Jensen J.N. Physicochemical processes. Water Environ. Res. 1997;69:444–462. doi: 10.2175/106143097X134777. DOI
Markovic S., Stankovic A., Lopicic Z., Lazarevic S., Stojanovic M., Uskokovic D. Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. 2015;3:716–724. doi: 10.1016/j.jece.2015.04.002. DOI
He J., Lu Y., Luo G. Ca (II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb (II) from aqueous solutions. Chem. Eng. J. 2014;244:202–208. doi: 10.1016/j.cej.2014.01.096. DOI
Reddy N.A., Lakshmipathy R., Sarada N.C. Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 2014;53:969–975. doi: 10.1016/j.aej.2014.07.006. DOI
Akkaya G., Güzel F. Bio removal and recovery of Cu (II) and Pb (II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: Kinetic study, equilibrium isotherm, SEM and FTIR analysis. Desalin. Water Treat. 2013;51:7311–7322. doi: 10.1080/19443994.2013.815685. DOI
Kumar B., Smita K., Sánchez E., Stael C., Cumbal L. Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecol. Eng. 2016;93:152–158. doi: 10.1016/j.ecoleng.2016.05.034. DOI
Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999;33:2469–2479. doi: 10.1016/S0043-1354(98)00475-8. DOI
Agarwal M., Singh K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2017;7:387–419.
Atkovska K., Lisichkov K., Ruseska G., Dimitrov A.T., Grozdanov A. Removal of heavy metal ions from wastewater using conventional and nanosorbents: A review. J. Chem. Technol. Metall. 2018;53:202–219.
Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019;290:111197. doi: 10.1016/j.molliq.2019.111197. DOI
Sheth Y., Dharaskar S., Khalid M., Sonawane S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021;43:100951.
Hasanpour M., Hatami M. Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020;284:102247. doi: 10.1016/j.cis.2020.102247. PubMed DOI
Alinnor I.J. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel. 2007;86:853–857. doi: 10.1016/j.fuel.2006.08.019. DOI
Duran A., Soylak M., Tuncel S.A. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J. Hazard. Mater. 2008;155:114–120. doi: 10.1016/j.jhazmat.2007.11.037. PubMed DOI
Kara A. Poly (ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J. Hazard. Mater. 2004;106:93–99. doi: 10.1016/j.jhazmat.2003.08.016. PubMed DOI
Şenkal B.F., Biçak N. Glycidyl methacrylate-based polymer resins with diethylene triamine tetra acetic acid functions for efficient removal of Ca (II) and Mg (II) React. Funct. Polym. 2001;49:151–157. doi: 10.1016/S1381-5148(01)00075-X. DOI
Coutinho F.M.B., Rezende S.M., Barbosa C.C.R. Influence of the morphological structure of macroreticular amidoxime resins on their complexation capacity. React. Funct. Polym. 2001;49:235–248. doi: 10.1016/S1381-5148(01)00079-7. DOI
Atia A.A., Donia A.M., Elwakeel K.Z. Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. React. Funct. Polym. 2005;65:267–275. doi: 10.1016/j.reactfunctpolym.2005.07.001. DOI
Gang D.D., Deng B., Lin L. As (III) removal using an iron-impregnated chitosan sorbent. J. Hazard. Mater. 2010;182:156–161. doi: 10.1016/j.jhazmat.2010.06.008. PubMed DOI
Gupta A., Yunus M., Sankararamakrishnan N. Chitosan- and Iron–Chitosan-Coated Sand Filters: A Cost-Effective Approach for Enhanced Arsenic Removal. Ind. Eng. Chem. Res. 2013;52:2066–2072. doi: 10.1021/ie302428z. DOI
Wang J., Xu W., Chen L., Huang X., Liu J. Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem. Eng. J. 2014;251:25–34. doi: 10.1016/j.cej.2014.04.061. DOI
Liu C., Li Y., Hou Y. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead. Molecules. 2019;24:2704. doi: 10.3390/molecules24152704. PubMed DOI PMC
Kumar A.S.K., Kumar C.U., Rajesh V., Rajesh N. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr (VI) adsorption. Int. J. Biol. Macromol. 2014;66:135–143. doi: 10.1016/j.ijbiomac.2014.02.007. PubMed DOI
Shen C., Chen H., Wu S., Wen Y., Li L., Jiang Z., Li M., Liu W. Highly efficient detoxification of Cr (VI) by chitosan–Fe (III) complex: Process and mechanism studies. J. Hazard. Mater. 2013;244:689–697. doi: 10.1016/j.jhazmat.2012.10.061. PubMed DOI
Liu B., Lv X., Meng X., Yu G., Wang D. Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J. 2013;220:412–419. doi: 10.1016/j.cej.2013.01.071. DOI
Lu Y., He J., Luo G. An improved synthesis of chitosan bead for Pb(II) adsorption. Chem. Eng. J. 2013;226:271–278. doi: 10.1016/j.cej.2013.04.078. DOI
Jiang W., Chen X., Pan B., Zhang Q., Teng L., Chen Y., Liu L. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. J. Hazard. Mater. 2014;276:295–301. doi: 10.1016/j.jhazmat.2014.05.032. PubMed DOI
Negm N.A., El Sheikh R., El-Farargy A.F., Hefni H.H.H., Bekhit M. Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J. Ind. Eng. Chem. 2015;21:526–534. doi: 10.1016/j.jiec.2014.03.015. DOI
Sikder M.T., Mihara Y., Islam M.S., Saito T., Tanaka S., Kurasaki M. Preparation and characterization of chitosan–carboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem. Eng. J. 2014;236:378–387. doi: 10.1016/j.cej.2013.09.093. DOI
Allouche F.-N., Guibal E., Mameri N. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids Surf. Physicochem. Eng. Asp. 2014;446:224–232. doi: 10.1016/j.colsurfa.2014.01.025. DOI
Jaiswal A., Ghsoh S.S., Chattopadhyay A. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal. Langmuir. 2012;28:15687–15696. doi: 10.1021/la3027573. PubMed DOI
Wang Y., Qi Y., Li Y., Wu J., Ma X., Yu C., Ji L. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013;260:9–15. doi: 10.1016/j.jhazmat.2013.05.001. PubMed DOI
Liu D., Li Z., Zhu Y., Li Z., Kumar R. Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: Adsorption and desorption performance. Carbohydr. Polym. 2014;111:469–476. doi: 10.1016/j.carbpol.2014.04.018. PubMed DOI
Kyzas G.Z., Siafaka P.I., Lambropoulou D.A., Lazaridis N.K., Bikiaris D.N. Poly (itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb (II) and Cd (II) Uptake. Langmuir. 2014;30:120–131. doi: 10.1021/la402778x. PubMed DOI
Monier M., Abdel-Latif D.A. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J. Hazard. Mater. 2012;209–210:240–249. doi: 10.1016/j.jhazmat.2012.01.015. PubMed DOI
Aliabadi M., Irani M., Ismaeili J., Piri H., Parnian M.J. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem. Eng. J. 2013;220:237–243. doi: 10.1016/j.cej.2013.01.021. DOI
Heidari A., Younesi H., Mehraban Z., Heikkinen H. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 2013;61:251–263. doi: 10.1016/j.ijbiomac.2013.06.032. PubMed DOI
Tirtom V.N., Dinçer A., Becerik S., Aydemir T., Çelik A. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem. Eng. J. 2012;197:379–386. doi: 10.1016/j.cej.2012.05.059. DOI
Kyzas G.Z., Siafaka P.I., Pavlidou E.G., Chrissafis K.J., Bikiaris D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015;259:438–448. doi: 10.1016/j.cej.2014.08.019. DOI
Milosavljevic N.B., Ristic M.Đ., Peric-Grujic A.A., Filipovic J.M., Strbac S.B., Rakocevic Z.L., Krusic M.T.K. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J. Hazard. Mater. 2011;192:846–854. doi: 10.1016/j.jhazmat.2011.05.093. PubMed DOI
Song X., Li C., Xu R., Wang K. Molecular-Ion-Imprinted Chitosan Hydrogels for the Selective Adsorption of Silver(I) in Aqueous Solution. Ind. Eng. Chem. Res. 2012;51:11261–11265. doi: 10.1021/ie3010989. DOI
Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015;264:56–65. doi: 10.1016/j.cej.2014.11.062. DOI
Aliabadi M., Irani M., Ismaeili J., Najafzadeh S. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2014;45:518–526. doi: 10.1016/j.jtice.2013.04.016. DOI
Al-Wakeel K.Z., Abd El Monem H., Khalil M.M.H. Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. J. Environ. Chem. Eng. 2015;3:179–186. doi: 10.1016/j.jece.2014.11.022. DOI
Mahfouz M.G., Galhoum A.A., Gomaa N.A., Abdel-Rehem S.S., Atia A.A., Vincent T., Guibal E. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem. Eng. J. 2015;262:198–209. doi: 10.1016/j.cej.2014.09.061. DOI
Xu C., Wang J., Yang T., Chen X., Liu X., Ding X. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 2015;121:79–85. doi: 10.1016/j.carbpol.2014.12.024. PubMed DOI
Padilla-Rodriguez A., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L., Perales-Perez O., Roman-Velazquez F.R. Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchem. J. 2015;118:1–11. doi: 10.1016/j.microc.2014.07.011. DOI
Zhou L., Xu J., Liang X., Liu Z. Adsorption of platinum (IV) and palladium (II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010;182:518–524. doi: 10.1016/j.jhazmat.2010.06.062. PubMed DOI
Yan L., Yin H., Zhang S., Leng F., Nan W., Li H. Biosorption of inorganic and organic arsenic from aqueous solution by Acid thiobacillus ferrooxidans BY-3. J. Hazard. Mater. 2010;178:209–217. doi: 10.1016/j.jhazmat.2010.01.065. PubMed DOI
Han W., Fu F., Cheng Z., Tang B., Wu S. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J. Hazard. Mater. 2016;302:437–446. doi: 10.1016/j.jhazmat.2015.09.041. PubMed DOI
Raval N.P., Shah P.U., Shah N.K. Adsorptive removal of nickel (II) ions from aqueous environment: A review. J. Environ. Manag. 2016;179:1–20. doi: 10.1016/j.jenvman.2016.04.045. PubMed DOI
Koedrith P., Kim H., Weon J.-I., Seo Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health. 2013;216:587–598. doi: 10.1016/j.ijheh.2013.02.010. PubMed DOI
Karnitz O., Jr., Gurgel L.V.A., De Melo J.C.P., Botaro V.R., Melo T.M.S., de Freitas Gil R.P., Gil L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007;98:1291–1297. doi: 10.1016/j.biortech.2006.05.013. PubMed DOI
Sugunan A., Thanachayanont C., Dutta J., Hilborn J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater. 2005;6:335. doi: 10.1016/j.stam.2005.03.007. DOI
Krystofova O., Shestivska V., Galiova M., Novotny K., Kaiser J., Zehnalek J., Babula P., Opatrilova R., Adam V., Kizek R. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors. 2009;9:5040–5058. doi: 10.3390/s90705040. PubMed DOI PMC
Demim S., Drouiche N., Aouabed A., Benayad T., Dendene-Badache O., Semsari S. Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol. Eng. 2013;61:426–435. doi: 10.1016/j.ecoleng.2013.10.016. DOI
Filipič M. Mechanisms of cadmium induced genomic instability. Mutat. Res. Mol. Mech. Mutagen. 2012;733:69–77. doi: 10.1016/j.mrfmmm.2011.09.002. PubMed DOI
Atieh M.A., Bakather O.Y., Tawabini B.S., Bukhari A.A., Khaled M., Alharthi M., Fettouhi M., Abuilaiwi F.A. Removal of Chromium (III) from Water by Using Modified and Nonmodified Carbon Nanotubes. J. Nanomater. 2010:1–9. doi: 10.1155/2010/232378. DOI
Vaiopoulou E., Gikas P. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Water Res. 2012;46:549–570. doi: 10.1016/j.watres.2011.11.024. PubMed DOI
Malamis S., Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013;252–253:428–461. doi: 10.1016/j.jhazmat.2013.03.024. PubMed DOI
Mobasherpour I., Salahi E., Ebrahimi M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Res. Chem. Intermed. 2012;38:2205–2222. doi: 10.1007/s11164-012-0537-6. DOI
Yang S., Li J., Shao D., Hu J., Wang X. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 2009;166:109–116. doi: 10.1016/j.jhazmat.2008.11.003. PubMed DOI
Acharya J., Sahu J.N., Mohanty C.R., Meikap B.C. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J. 2009;149:249–262. doi: 10.1016/j.cej.2008.10.029. DOI
Cechinel M.A.P., de Souza A.A.U. Study of lead (II) adsorption onto activated carbon originating from cow bone. J. Clean. Prod. 2014;65:342–349. doi: 10.1016/j.jclepro.2013.08.020. DOI
Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47:3931–3946. doi: 10.1016/j.watres.2012.09.058. PubMed DOI
Akar S.T., Akar T., Kaynak Z., Anilan B., Cabuk A., Tabak Ö., Demir T.A., Gedikbey T. Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy. 2009;97:98–104. doi: 10.1016/j.hydromet.2009.01.009. DOI
Ding Y., Shen S.Z., Sun H., Sun K., Liu F. Synthesis of l-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens. Actuators B Chem. 2014;203:35–43. doi: 10.1016/j.snb.2014.06.054. DOI
Ennigrou D.J., Ali M.B.S., Dhahbi M. Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination. 2014;343:82–87. doi: 10.1016/j.desal.2013.11.006. DOI
Awual M.R., Yaita T., El-Safty S.A., Shiwaku H., Suzuki S., Okamoto Y. Copper (II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 2013;221:322–330. doi: 10.1016/j.cej.2013.02.016. DOI
Tang W.W., Zeng G.M., Gong J.L., Liang J., Xu P., Zhang C., Huang B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014;468–469:1014–1027. doi: 10.1016/j.scitotenv.2013.09.044. PubMed DOI
Cristian P., Violeta P., Anita-Laura R., Raluca I., Alexandrescu E., Andrei S., Daniela I.-E., Raluca M.A., Cristina M., Ioana C.A. Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process. Eng. 2015;8:1–10. doi: 10.1016/j.jwpe.2015.08.001. DOI
Ojedokun A.T., Bello O.S. Sequestering heavy metals from wastewater using cow dung. Water Resour. Ind. 2016;13:7–13. doi: 10.1016/j.wri.2016.02.002. DOI
Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008;157:220–229. doi: 10.1016/j.jhazmat.2008.01.024. PubMed DOI
Vunain E., Mishra A., Mamba B. Dendrimers, mesoporous silicas and chitosan-based nano sorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016;86:570–586. doi: 10.1016/j.ijbiomac.2016.02.005. PubMed DOI
Owsik I.A., Kolarz B.N., Jermakowicz-Bartkowiak D., Jezierska J. Synthesis and characterization of resins with ligands containing guanidinine derivatives. Cu (II) sorption and coordination properties. Polymer. 2003;44:5547–5558.
Huang Y., Zeng X., Guo L., Lan J., Zhang L., Cao D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018;194:462–469. doi: 10.1016/j.seppur.2017.11.068. DOI
Bharathi K.S., Ramesh S.T. Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci. 2013;3:773–790. doi: 10.1007/s13201-013-0117-y. DOI
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI
Freundlich H. Over the adsorption in solution. Z. Phys. Chem. 1906;57:385–470.
Atkins P., Paula J. Atkins’ Physical Chemistry. 9th ed. OUP Oxford; Oxford, UK: 2010. The rate of chemical reactions.
Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006;97:1061–1085. doi: 10.1016/j.biortech.2005.05.001. PubMed DOI
Liu Y. Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data. 2009;54:1981–1985. doi: 10.1021/je800661q. DOI
Dubey R., Bajpai J., Bajpai A.K. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ. Nanotechnol. Monit. Manag. 2016;6:32–44. doi: 10.1016/j.enmm.2016.06.008. DOI
Razzaz A., Ghorban S., Hosayni L., Irani M., Aliabadi M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 2016;58:333–343. doi: 10.1016/j.jtice.2015.06.003. DOI
Kim E.J., Lee C.S., Chang Y.Y., Chang Y.S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl. Mater. Interfaces. 2013;5:9628–9634. doi: 10.1021/am402615m. PubMed DOI
Huang S.H., Chen D.H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009;163:174–179. doi: 10.1016/j.jhazmat.2008.06.075. PubMed DOI
Gupta A. Preparation of ethyleneamine functionalized crosslinked poly (acrylonitrile-ethylene glycol-dimethacrylate) chelating resins for adsorption of lead ions. Sep. Sci. Technol. 2017;52:447–455. doi: 10.1080/01496395.2016.1264961. DOI
Vilar V.J., Botelho C.M., Boaventura R.A. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry. J. Hazard. Mater. 2007;143:396–408. doi: 10.1016/j.jhazmat.2006.09.046. PubMed DOI
Kesenci K., Say R., Denizli A. Removal of heavy metal ions from water by using poly (ethyleneglycol dimethacrylate-co-acrylamide) beads. Eur. Polym. J. 2002;38:1443–1448. doi: 10.1016/S0014-3057(01)00311-1. DOI
Kumari S., Rath P., Kumar A.S.H., Tiwari T.N. Removal of hexavalent chromium using chitosan prepared from shrimp shells. Afr. J. Biotechnol. 2016;15:50–54.
Verma A., Thakur S., Mamba G., Gupta R.K., Thakur P., Thakur V.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 2020;148:1130–1139. doi: 10.1016/j.ijbiomac.2020.01.142. PubMed DOI
Vakili M., Deng S., Cagnetta G., Wang W., Meng P., Liu D., Yu G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019;224:373–387. doi: 10.1016/j.seppur.2019.05.040. DOI
Momina M., Shahadat M., Isamil S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018;8:24571–24587. doi: 10.1039/C8RA04290J. PubMed DOI PMC
Qu R., Wang C., Sun C., Ji C., Cheng G., Wang X., Xu G. Syntheses and adsorption properties for Hg2+ of chelating resin of crosslinked polystyrene-supported 2,5-dimercapto-1,3,4-thiodiazole. J. Appl. Polym. Sci. 2004;92:1646–1652. doi: 10.1002/app.20109. DOI
Saglam A., Bektaş S., Patır S., Genç Ö., Denizli A. Novel metal complexing ligand: Thiazolidine carrying poly (hydroxyethyl methacrylate) microbeads for removal of cadmium (II) and lead (II) ions from aqueous solutions. React. Funct. Polym. 2001;47:185–192. doi: 10.1016/S1381-5148(01)00026-8. DOI
Srivastava S.K., Singh A.K., Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor—A paper industry waste material. Environ. Technol. 1994;15:353–361. doi: 10.1080/09593339409385438. DOI
Rorrer G.L., Hsien T.Y., Way J.D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind. Eng. Chem. Res. 1993;32:2170–2178. doi: 10.1021/ie00021a042. DOI
Volesky B., Prasetyo I. Cadmium removal in a biosorption column. Biotechnol. Bioeng. 1994;43:1010–1015. doi: 10.1002/bit.260431103. PubMed DOI
Holan Z.R., Volesky B., Prasetyo I. Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 1993;41:819–825. doi: 10.1002/bit.260410808. PubMed DOI
Bricka R.M., Hill D.O. Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes. ASTM International; West Conshohocken, PA, USA: 1989. Metal immobilization by solidification of hydroxide and xanthate sludges.
Flynn C.M., Carnahan T.G., Lindstrom R.E., Lindstrom R.E. Adsorption of Heavy Metal Ions by Xanthated Sawdust. Volume 8427 Department of the Interior, Bureau of Mines; Washington, DC, USA: 1979.
Tare V., Chaudhari S., Jawed M. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water Sci. Technol. 1992;26:237–246. doi: 10.2166/wst.1992.0404. DOI
Kral P., Klímek P., Mishra P.K., Rademacher P., Wimmer R. Preparation and Characterization of Cork Layered Composite Plywood Boards. BioResources. 2014;9:1977–1985. doi: 10.15376/biores.9.2.1977-1985. DOI
Kumar B., Smita K., Flores L.C. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 2017;10:S2335–S2342. doi: 10.1016/j.arabjc.2013.08.010. DOI
Masri M.S., Friedman M. Effect of chemical modification of wool on metal ion binding. J. Appl. Polym. Sci. 1974;18:2367–2377. doi: 10.1002/app.1974.070180815. DOI
Orhan Y., Büyükgüngör H. The Removal of Heavy Metals by Using Agricultural Wastes. Water Sci. Technol. 1993;28:247–255. doi: 10.2166/wst.1993.0114. DOI
Randall J.M., Hautala E., McDonald G. Binding of heavy metal ions by formaldehyde-polymerized peanut skins. J. Appl. Polym. Sci. 1978;22:379–387. doi: 10.1002/app.1978.070220207. DOI
Mishra P.K., Giagli K., Tsalagkas D., Mishra H., Talegaonkar S., Gryc V., Wimmer R. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat. Nanotechnol. 2018;12:13–21. doi: 10.2174/1872210511666170808111512. PubMed DOI
Bryant P.S., Petersen J.N., Lee J.M., Brouns T.M. Sorption of heavy metals by untreated red fir sawdust. Appl. Biochem. Biotechnol. 1992;34–35:777–788. doi: 10.1007/BF02920596. DOI
Mishra P., Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer-by-layer deposition. Ultrason. Sonochem. 2017;35:45–50. doi: 10.1016/j.ultsonch.2016.09.001. PubMed DOI
Celik A., Demirbaş A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sources. 2005;27:1167–1177. doi: 10.1080/00908310490479583. DOI
Siddiqui L., Bag J., Mittal D., Leekha A., Mishra H., Mishra M., Verma A.K., Mishra P.K., Ekielski A., Iqbal Z., et al. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol. 2020;152:786–802. doi: 10.1016/j.ijbiomac.2020.02.311. PubMed DOI
Xie B., Hou Y., Li Y. Modified lignin nanosphere adsorbent for lead and copper ions. BioResources. 2021;16:249. doi: 10.15376/biores.16.1.249-262. DOI
Zhang Y., Ni S., Wang X., Zhang W., Lagerquist L., Qin M., Willfor S., Xu C., Fatehi P. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem. Eng. J. 2019;372:82–91. doi: 10.1016/j.cej.2019.04.111. DOI
Supanchaiyamat N., Jetsrisuparb K., Knijnenburg J.T.N., Tsang D.C.W., Hunt A.J. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour. Technol. 2019;272:570–581. doi: 10.1016/j.biortech.2018.09.139. PubMed DOI
Berkeley R. RCW Berkeley, CW Goody and DC Elwood. Academic Press; New York, NY, USA: 1979. Chitin, Chitosan and their degradative enzymes in microbial polysaccharides and polysaccharides.
Yang T.C., Zall R.R. Absorption of metals by natural polymers generated from seafood processing wastes. Ind. Eng. Chem. Prod. Res. Dev. 1984;23:168–172. doi: 10.1021/i300013a033. DOI
Kurita K., Sannan T., Iwakura Y. Studies on chitin. VI. Binding of metal cations. J. Appl. Polym. Sci. 1979;23:511–515. doi: 10.1002/app.1979.070230221. DOI
Kurita K., Koyama Y., Taniguchi A. Studies on chitin. IX. Crosslinking of water-soluble chitin and evaluation of the products as adsorbents for cupric ion. J. Appl. Polym. Sci. 1986;31:1169–1176. doi: 10.1002/app.1986.070310502. DOI
Bertoni F.A., González J.C., García S.I., Sala L.F., Bellu S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr. Polym. 2018;180:55–62. doi: 10.1016/j.carbpol.2017.10.027. PubMed DOI
Hsien T.Y., Rorrer G.L. Effects of Acylation and Crosslinking on the Material Properties and Cadmium Ion Adsorption Capacity of Porous Chitosan Beads. Sep. Sci. Technol. 1995;30:2455–2475. doi: 10.1080/01496399508021395. DOI
Ishii H., Minegishi M., Lavitpichayawong B., Mitani T. Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. Int. J. Biol. Macromol. 1995;17:21–23. doi: 10.1016/0141-8130(95)93513-W. PubMed DOI
Mohanasrinivasan V., Mishra M., Paliwal J.S., Singh S.K., Selvarajan E., Suganthi V., Devi C.S. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech. 2013;4:167–175. doi: 10.1007/s13205-013-0140-6. PubMed DOI PMC
Unagolla J.M., Adikary S.U. Adsorption characteristics of cadmium and lead heavy metals into locally synthesized Chitosan Biopolymer. Trop. Agric. Res. 2015;26:395. doi: 10.4038/tar.v26i2.8102. DOI
Kuang S.P., Wang Z.Z., Liu J., Wu Z.C. Preparation of diethylene-tetramine grafted magnetic chitosan for adsorption of Pb (II) ion from aqueous solutions. J. Hazard. Mater. 2013;260:210–219. doi: 10.1016/j.jhazmat.2013.05.019. PubMed DOI
Suresh K.V., Daniel S.K., Ruckmani K., Sivakumar M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl. Nanosci. 2015;6:277–285.
Lv L., Chen N., Feng C., Zhang J., Li M. Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly (vinyl alcohol) particles. RSC Adv. 2017;7:27992–28000. doi: 10.1039/C7RA02810E. DOI
Leusch A., Holan Z.R., Volesky B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 1995;62:279–288. doi: 10.1002/jctb.280620311. DOI
Russo R., Malinconico M., Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules. 2007;8:3193–3197. doi: 10.1021/bm700565h. PubMed DOI
Hassan A.F., Abdel-Mohsen A.M., Elhadidy H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014;68:125–130. doi: 10.1016/j.ijbiomac.2014.04.006. PubMed DOI
Vu H.C., Dwivedi A.D., Le T.T., Seo S.H., Kim E.J., Chang Y.S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As (V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J. 2017;307:220–229. doi: 10.1016/j.cej.2016.08.058. DOI
Soltani R.D.C., Khorramabadi G.S., Khataee A.R., Jorfi S. Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 2014;45:973–980. doi: 10.1016/j.jtice.2013.09.014. DOI
Papageorgiou S.K., Kouvelos E.P., Katsaros F.K. Calcium alginate beads from Laminaria digitata for the removal of Cu+ 2 and Cd+ 2 from dilute aqueous metal solutions. Desalination. 2008;224:293–306. doi: 10.1016/j.desal.2007.06.011. DOI
Chakraborty S., Tare V. Role of various parameters in synthesis of insoluble agrobased xanthates for removal of copper from wastewater. Bioresour. Technol. 2006;97:2407–2413. doi: 10.1016/j.biortech.2005.10.010. PubMed DOI
Santiago I., Worland V., Cazares E., Cadena F. 47th Purdue Industrial Waste Conference Proceedings. CRC Press; Boca Raton, FL, USA: 1992. Adsorption of hexavalent chromium onto tailored zeolites; pp. 669–710.
He K., Chen Y., Tang Z., Hu Y. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 2015;23:2778–2788. doi: 10.1007/s11356-015-5422-6. PubMed DOI
Erdem E., Karapinar N., Donat R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004;280:309–314. doi: 10.1016/j.jcis.2004.08.028. PubMed DOI
Chen G., Shah K.J., Shi L., Chiang P.C. Removal of Cd (II) and Pb (II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms. Appl. Surf. Sci. 2017;409:296–305. doi: 10.1016/j.apsusc.2017.03.022. DOI
Griffin R.A., Shimp N.F. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. Volume 1 Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory; Cincinnati, OH, USA: 1978.
Sharma Y.C., Gupta G.S., Prasad G., Rupainwar D.C. Use of wollastonite in the removal of Ni (II) from aqueous solutions. Water. Air. Soil Pollut. 1990;49:69–79. doi: 10.1007/BF00279511. DOI
Chaturvedi A., Pathak K., Singh V. Fluoride removal from water by adsorption on China clay. Appl. Clay Sci. 1988;3:337–346. doi: 10.1016/0169-1317(88)90024-5. DOI
Pradas E.G., Sánchez M.V., Cruz F.C., Viciana M.S., Pérez M.F. Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Technol. Biotechnol. 1994;59:289–295. doi: 10.1002/jctb.280590312. DOI
Kunin R. Ion. Exchange Resins. John Wiley & Sons Inc.; New York, NY, USA: 1958. (No. 541.2/K96)
Song X., Li L., Zhou L., Chen P. Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion. Chem. Eng. Res. Des. 2018;136:581–592. doi: 10.1016/j.cherd.2018.06.025. DOI
Jokar M., Mirghaffari N., Soleimani M., Jabbari M. Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J. Water Process. Eng. 2019;28:88–99. doi: 10.1016/j.jwpe.2019.01.007. DOI
Zahed S.S.H., Khanlari S., Mohammadi T. Hydrous metal oxide incorporated polyacrylonitrile-based nanocomposite membranes for Cu(II) ions removal. Sep. Purif. Technol. 2019;213:151–161. doi: 10.1016/j.seppur.2018.12.027. DOI
Chitpong N., Husson S.M. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017;179:94–103. doi: 10.1016/j.seppur.2017.02.009. DOI
Moghbeli M.R., Khajeh A., Alikhani M. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 2017;309:552–562. doi: 10.1016/j.cej.2016.10.048. DOI
Murray A., Örmeci B. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters. J. Environ. Sci. 2019;75:247–254. doi: 10.1016/j.jes.2018.03.035. PubMed DOI
Beldar A., Tank R., Saxena A., Gupta D. Synthesis of styrene-DVB copolymers in presence of diluents. J. Polym. Mater. 2006;23:415–421.
Prasad H.H., Popat K.M., Anand P.S. Synthesis of Crosslinked Methacrylic Acid-co-ethyleneglycol Dimethacrylate Polymers for the Removal of Copper and Nickel from Water. Indian J. Chem. Technol. 2002;9:385–392.
Reddy K., Gaur P., Anand P., Dasare B. Synthesis and characterization of weakly acidic porous cation exchangers based on methacrylic acid. J. Polym. Mater. 1989;6:257–262.
Etorki A., Walli M. Water Pollution IX. WIT Press; Ashurst, UK: 2008. Removal of mercury (II) from wastewater using poly (vinyl pyrrolidinone)
Denizli A., Garipcan B., Karabakan A., Senoz H. Synthesis and characterization of poly (hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions. Mater. Sci. Eng. 2005;25:448–454. doi: 10.1016/j.msec.2004.12.001. DOI
Ma N., Yang Y., Chen S., Zhang Q. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. J. Hazard. Mater. 2009;171:288–293. doi: 10.1016/j.jhazmat.2009.06.001. PubMed DOI
Kalaivani S.S., Muthukrishnaraj A., Sivanesan S., Ravikumar L. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process. Saf. Environ. Prot. 2016;104:11–23. doi: 10.1016/j.psep.2016.08.010. DOI
Feng Y., Wang Y., Wang Y., Liu S., Jiang J., Cao C., Yao J. Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. J. Colloid Interface Sci. 2017;502:52–58. doi: 10.1016/j.jcis.2017.04.086. PubMed DOI
Saeed K., Haider S., Oh T.J., Park S.Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 2008;322:400–405. doi: 10.1016/j.memsci.2008.05.062. DOI
Kavaklı P.A., Yılmaz Z., Şen M. Investigation of Heavy Metal Ion Adsorption Characteristics of Poly (N, N Dimethylamino Ethylmethacrylate) Hydrogels. Sep. Sci. Technol. 2007;42:1245–1254. doi: 10.1080/01496390601120490. DOI
Eisazadeh H. Removal of arsenic in water using polypyrrole and its composites. Appl. Sci. J. 2008;3:10–13.
Zhang J., Chen Y., Zhao W., Li Y. Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism. R. Soc. Open Sci. 2018;5:181013. doi: 10.1098/rsos.181013. PubMed DOI PMC
Houari B., Louhibi S., Tizaoui K., Boukli-hacene L., Benguella B., Roisnel T., Dorcet V. New synthetic material removing heavy metals from aqueous solutions and wastewater. Arab. J. Chem. 2019;12:5040–5048. doi: 10.1016/j.arabjc.2016.11.010. DOI
Kim W., Shin H., Maeng K. Complexation characteristics of poly (acrylamidoxime) chelating resins using inductively coupled plasma atomic emission spectroscopy (Korea) Polymer. 1982;6:119–125.
Liu C.Y., Sun P.J. Preparation and analytical properties of a chelating resin containing cysteine groups. Anal. Chim. Acta. 1981;132:187–193. doi: 10.1016/S0003-2670(01)93889-9. DOI
Trochimczuk A.W. Chelating resins with N-substituted diamides of malonic acid as ligands. Eur. Polym. J. 1998;34:1657–1662. doi: 10.1016/S0014-3057(98)00018-4. DOI
Pekel N., Şahiner N., Guven O. Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiat. Phys. Chem. 2000;59:485–491. doi: 10.1016/S0969-806X(00)00308-X. DOI
Büyüktuncel E., Bektas S., Genç Ö., Denizli A. Poly (vinylalcohol) coated/Cibacron Blue F3GA-attached polypropylene hollow fiber membranes for removal of cadmium ions from aquatic systems. React. Funct. Polym. 2001;47:1–10. doi: 10.1016/S1381-5148(00)00054-7. DOI
Ali A.E.H., Shawky H.A., Abd El Rehim H.A., Hegazy E.A. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur. Polym. J. 2003;39:2337–2344.
Kavaklı P.A., Guven O. Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 2004;93:1705–1710. doi: 10.1002/app.20616. DOI
Sivadasan Chettiar K., Sreekumar K. Polystyrene-supported thiosemicarbazone-transition metal complexes: Synthesis and application as heterogeneous catalysts. Polym. Int. 1999;48:455–460. doi: 10.1002/(SICI)1097-0126(199906)48:6<455::AID-PI166>3.0.CO;2-F. DOI
Kaşgöz H., Özgümüş S., Orbay M. Preparation of modified polyacrylamide hydrogels and application in removal of Cu (II) ion. Polymer. 2001;42:7497–7502. doi: 10.1016/S0032-3861(01)00290-7. DOI
Ortiz-Palacios J., Cardoso J., Manero O. Production of macroporous resins for heavy-metal removal. I. Nonfunctionalized polymers. J. Appl. Polym. Sci. 2007;107:2203–2210. doi: 10.1002/app.27243. DOI
Cardoso J., Ortiz-Palacios J., Manero O. Production of microporous resins for heavy-metal removal. II. Functionalized polymers. J. Appl. Polym. Sci. 2007;107:3644–3653. doi: 10.1002/app.27422. DOI
El-Hamshary H., El-Garawany M., Assubaie F.N., Al-Eed M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci. 2003;89:2522–2526. doi: 10.1002/app.12305. DOI
Say R., Emir S., Garipcan B., Patir S., Denizli A. Novel methacryloylamidophenylalanine functionalized porous chelating beads for adsorption of heavy metal ions. Adv. Polym. Technol. 2003;22:355–364. doi: 10.1002/adv.10062. DOI
Bilba N., Bilba D., Moroi G. Copper (ii) and mercury (ii) retention properties of a polyacrylamidoxime chelating fiber. Environ. Eng. Manag. J. 2006;5:297–305. doi: 10.30638/eemj.2006.021. DOI
Hazer O., Kartal S. Synthesis of a Novel Chelating Resin for the Separation and Preconcentration of Uranium (VI) and Its Spectrophotometric Determination. Anal. Sci. 2009;25:547–551. doi: 10.2116/analsci.25.547. PubMed DOI
Uguzdogan E., Denkbaş E.B., Özturk E., Tuncel S.A., Kabasakal O.S. Preparation and characterization of polyethyleneglycolmethacrylate (PEGMA)-co-vinylimidazole (VI) microspheres to use in heavy metal removal. J. Hazard. Mater. 2009;162:1073–1080. doi: 10.1016/j.jhazmat.2008.05.145. PubMed DOI
Jing X., Liu F., Yang X., Ling P., Li L., Long C., Li A. Adsorption performances and mechanisms of the newly synthesized N, N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J. Hazard. Mater. 2009;167:589–596. doi: 10.1016/j.jhazmat.2009.01.020. PubMed DOI
Amoyaw P.A., Williams M., Bu X.R. The fast removal of low concentration of cadmium(II) from aqueous media by chelating polymers with salicylaldehyde units. J. Hazard. Mater. 2009;170:22–26. doi: 10.1016/j.jhazmat.2009.05.028. PubMed DOI
Denizli A., Salih B., Pişkin E. Alkali blue 6B-attached poly (EGDMA-HEMA) microbeads for removal of heavy-metal ions. React. Funct. Polym. 1996;29:11–19. doi: 10.1016/1381-5148(95)00100-X. DOI
Denizli A., Salih B., Pişkin E. New sorbents for removal of heavy metal ions: Diamine-glow-discharge treated polyhydroxyethylmethacrylate microspheres. J. Chromatogr. 1997;773:169–178. doi: 10.1016/S0021-9673(97)00187-8. DOI
Arsalani N., Hossein Z.M. Synthesis and characterization of EDTA functionalized polyacrylonitriles and their metal complexes. Iran. Polym. J. 2005;14:345–352.
Jermakowicz-Bartkowiak D., Kolarz B.N., Serwin A. Sorption of precious metals from acid solutions by functionalised vinyl benzyl chloride–acrylonitryle–divinylbenzene copolymers bearing amino and guanidine ligands. React. Funct. Polym. 2005;65:135–142. doi: 10.1016/j.reactfunctpolym.2004.11.010. DOI
Memon J.R., Memon S.Q., Bhanger M.I., Khuhawar M.Y., Allen G.C., Memon G.Z., Pathan A.G. Efficiency of Cd (II) removal from aqueous media using chemically modified polystyrene foam. Eur. Polym. J. 2008;44:1501–1511. doi: 10.1016/j.eurpolymj.2008.02.018. DOI
Tharanitharan V., Srinivasan K. Removal of Pb (II) from Aqueous Solutions by Using Dioctyl Sodium Sulphosuccinate-EDTA Modified Amberlite XAD-7HP Resin. Indian J. Chem. Technol. 2009;16:417–425.
Solangi I.B., Memon S., Bhanger M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009;171:815–819. doi: 10.1016/j.jhazmat.2009.06.072. PubMed DOI
El-Menshawy A.M., Kenawy I.M., El-Asmy A.A. Modification of chloromethylated polystyrene with 2-mercabtobenzothiazole for application as a new sorbent for preconcentration and determination of Ag+ from different matrices. J. Hazard. Mater. 2010;173:523–527. doi: 10.1016/j.jhazmat.2009.08.116. PubMed DOI
Sun C., Qu R., Xu Q., Chen H., Ji C., Wang C., Sun Y., Cheng G. Preparation of crosslinked polystyrene-supported ethylenediamine via a S-containing spacer and adsorption properties towards metal ions. Eur. Polym. J. 2007;43:1501–1509. doi: 10.1016/j.eurpolymj.2007.01.005. DOI
Haratake M., Yasumoto K., Ono M., Akashi M., Nakayama M. Synthesis of hydrophilic macroporous chelating polymers and their versatility in the preconcentration of metals in seawater samples. Anal. Chim. Acta. 2006;561:183–190. doi: 10.1016/j.aca.2006.01.042. DOI
Atia A.A., Donia A.M., Abou-El-Enein S.A., Yousif A.M. Studies on uptake behaviour of copper (II) and lead (II) by amine chelating resins with different textural properties. Sep. Purif. Technol. 2003;33:295–301. doi: 10.1016/S1383-5866(03)00089-3. DOI
Choi S.H., Nho Y.C., Kim G.T. Adsorption of Pb2+ and Pd2+ on polyethylene membrane with amino group modified by radiation-induced graft copolymerization. J. Appl. Polym. Sci. 1999;71:643–650. doi: 10.1002/(SICI)1097-4628(19990124)71:4<643::AID-APP16>3.0.CO;2-8. DOI
Atia A.A., Donia A.M., El-Enein S.A., Yousif A.M. Effect of Chain Length of Aliphatic Amines Immobilized on a Magnetic Glycidyl Methacrylate Resin towards the Uptake Behavior of Hg (II) from Aqueous Solutions. Sep. Sci. Technol. 2007;42:403–420. doi: 10.1080/01496390601069978. DOI
Bicak N., Sherrington D.C., Sungur S., Tan N. A glycidyl methacrylate-based resin with pendant urea groups as a high-capacity mercury specific sorbent. React. Funct. Polym. 2003;54:141–147. doi: 10.1016/S1381-5148(02)00189-X. DOI
Şenkal B.F., Yavuz E. Crosslinked poly (glycidyl methacrylate)-based resin for removal of mercury from aqueous solutions. J. Appl. Polym. Sci. 2006;101:348–352. doi: 10.1002/app.23798. DOI
Chen C.Y., Lin M.S., Hsu K.R. Recovery of Cu (II) and Cd (II) by a chelating resin containing aspartate groups. J. Hazard. Mater. 2008;152:986–993. doi: 10.1016/j.jhazmat.2007.07.074. PubMed DOI
Nastasovic A., Jovanovic S., Jakovljevic D., Stankovic S., Onjia A. Noble metal binding on macroporous poly (GMA-co-EGDMA) modified with ethylenediamine. J. Serb. Chem. Soc. 2004;69:455–460. doi: 10.2298/JSC0406455N. DOI
Gupta A., Jain R., Gupta D.C. Studies on uptake behavior of Hg (II) and Pb (II) by amine modified glycidyl methacrylate–styrene–N, N′-methylenebisacrylamide terpolymer. React. Funct. Polym. 2015;93:22–29. doi: 10.1016/j.reactfunctpolym.2015.05.005. DOI
Azanova V.V., Hradil J., Švec F., Pelzbauer Z., Panarin E.F. Reactive polymers. 60. glycidyl methacrylate-styrene-ethylene dimethacrylate terpolymers modified with strong-acid groups. React. Polym. 1990;12:247–260.
Lindsay D., Sherrington D.C. Synthesis of chelating resins based on poly(styrene-co-divinylbenzene) and poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) React. Polym. Ion. Exch. Sorbents. 1985;3:327–339. doi: 10.1016/0167-6989(85)90021-2. DOI
Verweij P.D., van der Geest J.S.N., Driessen W.L., Reedijk J., Sherrington D.C. Metal uptake by a novel benzimidazole ligand immobilized onto poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) React. Polym. 1992;18:191–201. doi: 10.1016/0923-1137(92)90649-M. DOI
Bayramoğlu G., Arica M.Y. Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p(GMA-MMA-EGDMA) beads. J. Hazard. Mater. 2007;144:449–457. doi: 10.1016/j.jhazmat.2006.10.058. PubMed DOI
Atia A.A., Donia A.M., Awed H.A. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. J. Hazard. Mater. 2008;155:100–108. doi: 10.1016/j.jhazmat.2007.11.035. PubMed DOI
Liu C., Bai R., San Ly Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 2008;42:1511–1522. doi: 10.1016/j.watres.2007.10.031. PubMed DOI
Mohy-Eldin M.S., Elkady M.F., Abu-Saied M.A., Rahman A.M.A., Soliman E.A., Elzatahry A.A., Youssef M.E. Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly (glycidyl methacrylate) cation exchanger: Kinetic and equilibrium studies. J. Appl. Polym. Sci. 2010;118:3111–3122. doi: 10.1002/app.32587. DOI
Nastasovic A., Sandic Z., Surucic L., Maksin D., Jakovljevic D., Onjia A. Kinetics of hexavalent chromium sorption on amino-functionalized macroporous glycidyl methacrylate copolymer. J. Hazard. Mater. 2009;171:153–159. doi: 10.1016/j.jhazmat.2009.05.116. PubMed DOI
Anirudhan T.S., Jalajamony S., Divya L. Efficiency of Amine-Modified Poly (glycidyl methacrylate)-Grafted Cellulose in the Removal and Recovery of Vanadium(V) from Aqueous Solutions. Ind. Eng. Chem. Res. 2009;48:2118–2124. doi: 10.1021/ie8000869. DOI
Gokila S., Gomathi T., Sudha P.N., Anil S. Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int. J. Biol. Macromol. 2017;104:1459–1468. doi: 10.1016/j.ijbiomac.2017.05.117. PubMed DOI
Liu C., Lei X., Wang L., Jia J., Liang X., Zhao X., Zhu H. Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes. Chem. Eng. J. 2017;327:60–70. doi: 10.1016/j.cej.2017.06.070. DOI
Lam B., Deon S., Morin-Crini N., Crini G., Fievet P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod. 2018;171:927–933. doi: 10.1016/j.jclepro.2017.10.090. DOI
Li Z., Kong Y., Ge Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem. Eng. J. 2015;270:229–234. doi: 10.1016/j.cej.2015.01.123. DOI
Ali A., Mannan A., Hussain I., Hussain I., Zia M. Effective removal of metal ions from aqueous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ. Nanotechnol. Monit. Manag. 2018;9:1–11.
Zhou G., Luo J., Liu C., Chu L., Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018;131:246–254. doi: 10.1016/j.watres.2017.12.067. PubMed DOI
Racho P., Phalathip P. Modified Nylon Fibers with Amino Chelating Groups for Heavy Metal Removal. Energy Procedia. 2017;118:195–200. doi: 10.1016/j.egypro.2017.07.026. DOI
Argun M.E., Dursun S. Removal of heavy metal ions using chemically modified adsorbents. J. Int. Environ. Appl. Sci. 2006;1:27–40.
Chen Y., Zhao W., Wang H., Li Y., Li C. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance. R. Soc. Open Sci. 2018;5:171665. doi: 10.1098/rsos.171665. PubMed DOI PMC
Ko D., Lee J.S., Patel H.A., Jakobsen M.H., Hwang Y., Yavuz C.T., Hansen H.C.B., Andersen H.R. Selective removal of heavy metal ions by disulfide linked polymer networks. J. Hazard. Mater. 2017;332:140–148. doi: 10.1016/j.jhazmat.2017.03.007. PubMed DOI
Huang Y., Wu D., Wang X., Huang W., Lawless D., Feng X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 2016;158:124–136. doi: 10.1016/j.seppur.2015.12.008. DOI
Chen H., Zhao Y., Yang Q., Yan Q. Preparation of poly-ammonium/sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments. J. Environ. Chem. Eng. 2018;6:2344–2354. doi: 10.1016/j.jece.2018.03.029. DOI
Kistler S.S.J.N. Coherent expanded aerogels and jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI
Maleki H., Hüsing N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B Environ. 2018;221:530–555. doi: 10.1016/j.apcatb.2017.08.012. DOI
Gurav J.L., Jung I.K., Park H.H., Kang E.S., Nadargi D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010;2010 doi: 10.1155/2010/409310. DOI
Kadirvelu K., Goel J., Rajagopal C. Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. J. Hazard. Mater. 2008;153:502–507. doi: 10.1016/j.jhazmat.2007.08.082. PubMed DOI
Meena A.K., Mishra G.K., Rai P.K., Rajagopal C., Nagar P.N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 2005;122:161–170. doi: 10.1016/j.jhazmat.2005.03.024. PubMed DOI
Goel J., Kadirvelu K., Rajagopal C., Garg V.K. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2005;80:469–476. doi: 10.1002/jctb.1212. DOI
Goel J., Kadirvelu K., Rajagopal C. Competitive sorption of Cu (II), Pb (II) and Hg (II) ions from aqueous solution using coconut shell-based activated carbon. Adsorpt. Sci. Technol. 2004;22:257–273. doi: 10.1260/0263617041503453. DOI
Goel J., Kadirvelu K., Rajagopal C., Garg V.K. Cadmium (II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 2006;45:6531–6537. doi: 10.1021/ie060010u. DOI
Motahari S., Nodeh M., Maghsoudi K. Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups. Desalin. Water Treat. 2016;57:16886–16897. doi: 10.1080/19443994.2015.1082506. DOI
Veselá P., Slovák V., Zelenka T., Koštejn M., Mucha M. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu (II) ions and phenol. J. Anal. Appl. Pyrolysis. 2016;121:29–40. doi: 10.1016/j.jaap.2016.06.016. DOI
Zhang X., Wei W., Zhang S., Wen B., Su Z. Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Sci. China Mater. 2019;62:1888–1897. doi: 10.1007/s40843-019-9473-2. DOI
Han Q., Chen L., Li W., Zhou Z., Fang Z., Xu Z., Qian X. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu 2+ from aqueous solution. Environ. Sci. Pollut. Res. 2018;25:34438–34447. doi: 10.1007/s11356-018-3409-9. PubMed DOI
Pan L., Wang Z., Yang Q., Huang R. Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials. 2018;8:957. doi: 10.3390/nano8110957. PubMed DOI PMC
Tabrizi N., Zamani S.J.W.S. Removal of Pb (II) from aqueous solutions by graphene, oxide aerogels. Water Sci. Technol. 2016;74:256–265. doi: 10.2166/wst.2016.213. PubMed DOI
Yu B., Xu J., Liu J.H., Yang S.T., Luo J., Zhou Q., Wan J., Liao R., Wang H., Liu Y. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 2013;1:1044–1050. doi: 10.1016/j.jece.2013.08.017. DOI
Chandra V., Park J., Chun Y., Lee J.W., Hwang I.C., Kim K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4:3979–3986. doi: 10.1021/nn1008897. PubMed DOI
Weng X., Wu J., Ma L., Owens G., Chen Z. Impact of synthesis conditions on Pb (II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J. 2019;359:976–981. doi: 10.1016/j.cej.2018.11.089. DOI
Fu W., Huang Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere. 2018;209:449–456. doi: 10.1016/j.chemosphere.2018.06.087. PubMed DOI
Wang X., Liu Y., Pang H., Yu S., Ai Y., Ma X., Song G., Hayat T., Alsaedi A., Wang X. Effect of graphene oxide surface modification on the elimination of Co (II) from aqueous solutions. Chem. Eng. J. 2018;344:380–390. doi: 10.1016/j.cej.2018.03.107. DOI
Pakulski D., Czepa W., Witomska S., Aliprandi A., Pawluć P., Patroniak V., Ciesielski A., Samorì P. Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. J. Mater. Chem. A. 2018;6:9384–9390. doi: 10.1039/C8TA01622D. DOI
Zheng Y., Cheng B., You W., Yu J., Ho W. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr (VI) ions. J. Hazard. Mater. 2019;369:214–225. doi: 10.1016/j.jhazmat.2019.02.013. PubMed DOI
Zhang N., Qiu H., Si Y., Wang W., Gao J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011;49:827–837. doi: 10.1016/j.carbon.2010.10.024. DOI
Yusuf M., Elfghi F.M., Zaidi S.A., Abdullah E.C., Khan M.A. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview. RSC Adv. 2015;5:50392–50420. doi: 10.1039/C5RA07223A. DOI
Wu W., Yang Y., Zhou H., Ye T., Huang Z., Liu R., Kuang Y. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 2013;224:1372. doi: 10.1007/s11270-012-1372-5. DOI
Leng Y., Guo W., Su S., Yi C., Xing L. Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012;211:406–411. doi: 10.1016/j.cej.2012.09.078. DOI
Ren Y., Yan N., Feng J., Ma J., Wen Q., Li N., Dong Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012;136:538–544. doi: 10.1016/j.matchemphys.2012.07.023. DOI
Hao L., Song H., Zhang L., Wan X., Tang Y., Lv Y. SiO2/graphene composite for highly selective adsorption of Pb (II) ion. J. Colloid Interface Sci. 2012;369:381–387. doi: 10.1016/j.jcis.2011.12.023. PubMed DOI
Zhao G., Ren X., Gao X., Tan X., Li J., Chen C., Huang Y., Wang X. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011;40:10945–10952. doi: 10.1039/c1dt11005e. PubMed DOI
Dai H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002;500:218–241. doi: 10.1016/S0039-6028(01)01558-8. DOI
Zhao Y.L., Stoddart J.F. Noncovalent functionalization of single-walled carbon nanotubes. Accounts Chem. Res. 2009;42:1161–1171. doi: 10.1021/ar900056z. PubMed DOI
Luo C., Wei R., Guo D., Zhang S., Yan S. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J. 2013;225:406–415. doi: 10.1016/j.cej.2013.03.128. DOI
Liang J., Liu J., Yuan X., Dong H., Zeng G., Wu H., Wang H., Liu J., Hua S., Zhang S., et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 2015;273:101–110. doi: 10.1016/j.cej.2015.03.069. DOI
Ren X., Chen C., Nagatsu M., Wang X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011;170:395–410. doi: 10.1016/j.cej.2010.08.045. DOI
Al-Khaldi F.A., Abusharkh B., Khaled M., Atieh M.A., Nasser M.S., Saleh T.A., Agarwal S., Tyagi I., Gupta V.K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 2015;204:255–263.
Shao D., Jiang Z., Wang X. SDBS modified XC-72 carbon for the removal of Pb (II) from aqueous solutions. Plasma Process. Polym. 2010;7:552–560. doi: 10.1002/ppap.201000005. DOI
Ren X., Shao D., Zhao G., Sheng G., Hu J., Yang S., Wang X. Plasma Induced Multiwalled Carbon Nanotube Grafted with 2-Vinylpyridine for Preconcentration of Pb (II) from Aqueous Solutions. Plasma Process. Polym. 2011;8:589–598. doi: 10.1002/ppap.201000192. DOI
Chen H., Li J., Shao D., Ren X., Wang X. Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J. 2012;210:475–481. doi: 10.1016/j.cej.2012.08.082. DOI
Yu J.G., Zhao X.H., Yu L.Y., Jiao F.P., Jiang J.H., Chen X.Q. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Chem. 2014;299:1155–1163. doi: 10.1007/s10967-013-2818-y. DOI
Kahrizi P., Mohseni-Shahri F.S., Moeinpour F. Adsorptive removal of cadmium from aqueous solutions using NiFe 2 O 4/hydroxyapatite/graphene quantum dots as a novel nano-adsorbent. J. Nanostructure Chem. 2018;8:441–452. doi: 10.1007/s40097-018-0284-3. DOI
Yan H.L., Ding J., Luan Z., Di J., Zhu Y., Xu C., Wu D., Wei B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41:2787–2792.
Van Oss C.J. A review of:“Active Carbon.” RC Bansal, JB Donnet and F. Stoeckli; Marcel Dekker, New York, 1988. pp. 482, $135.00. J. Dispers. Sci. Technol. 1990;11:323. doi: 10.1080/01932699008943255. DOI
Bahl O., Dhami T., Manocha L.M. Indo Carbon 2001—Conference (2001: Indian Carbon Society) Shipra; New Delhi, India: 2002. Advances in carbon and carbon materials.
Singh A., Lal D. Microporous activated carbon spheres prepared from resole-type crosslinked phenolic beads by physical activation. J. Appl. Polym. Sci. 2008;110:3283–3291. doi: 10.1002/app.28846. DOI
Mahmoud M.E., Khalifa M.A., Al-sherady M.A., Mohamed A.K., El-Demerdash F.M. A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions. Powder Technol. 2019;351:169–177. doi: 10.1016/j.powtec.2019.04.020. DOI
Cao F., Lian C., Yu J., Yang H., Lin S. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour. Technol. 2019;276:211–218. doi: 10.1016/j.biortech.2019.01.007. PubMed DOI
Eeshwarasinghe D., Loganathan P., Vigneswaran S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere. 2009;223:616–627. doi: 10.1016/j.chemosphere.2019.02.033. PubMed DOI
Li L.Y., Gong X., Abida O. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Manag. 2019;87:375–386. doi: 10.1016/j.wasman.2019.02.019. PubMed DOI
Anirudhan T.S., Sreekumari S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011;23:1989–1998. doi: 10.1016/S1001-0742(10)60515-3. PubMed DOI
Aguayo-Villarreal I.A., Bonilla-Petriciolet A., Muñiz-Valencia R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 2017;230:686–695. doi: 10.1016/j.molliq.2017.01.039. DOI
Dong L., Hou L., Wang Z., Gu P., Chen G., Jiang R. A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism. J. Hazard. Mater. 2018;359:76–84. doi: 10.1016/j.jhazmat.2018.07.030. PubMed DOI
Krishnamoorthy R., Govindan B., Banat F., Sagadevan V., Purushothaman M., Show P.L. Date pits activated carbon for divalent lead ions removal. J. Biosci. Bioeng. 2019;128:88–97. doi: 10.1016/j.jbiosc.2018.12.011. PubMed DOI
Jain M., Yadav M., Kohout T., Lahtinen M., Garg V.K., Sillanpää M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018;20:54–74. doi: 10.1016/j.wri.2018.10.001. DOI