A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment

. 2021 Aug 20 ; 14 (16) : . [epub] 20210820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34443225

Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.

Zobrazit více v PubMed

Vakili M., Rafatullah M., Salamatinia B., Abdullah A.Z., Ibrahim M.H., Tan K.B., Gholami Z., Amouzgar P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 2014;113:115–130. doi: 10.1016/j.carbpol.2014.07.007. PubMed DOI

Reddy D.H.K., Lee S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 2013;201:68–93. doi: 10.1016/j.cis.2013.10.002. PubMed DOI

Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014;7:60. doi: 10.2478/intox-2014-0009. PubMed DOI PMC

Luo C., Liu C., Wang Y., Liu X., Li F., Zhang G., Li X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011;186:481–490. doi: 10.1016/j.jhazmat.2010.11.024. PubMed DOI

Morais S., Costa F.G., Pereira M.D.L. Heavy metals and human health. Environ. Health Emerg. Issues Pract. 2012;10:227–245.

Escudero L.B., Quintas P.Y., Wuilloud R.G., Dotto G.L. Green Adsorbents for Pollutant Removal. Springer; Cham, Switzerland: 2018. Biosorption of metals and metalloids; pp. 35–86.

Jan A., Azam M., Siddiqui K., Ali A., Choi I., Haq Q. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015;16:29592–29630. doi: 10.3390/ijms161226183. PubMed DOI PMC

Bratjer K., Dabek-Zlotorzynska E. Separation of Metal Ions on a Modified Aluminum Oxide. Talanta. 1990;37:613. PubMed

Beauvais R.A., Alexandratos S.D. Polymer-supported reagents for the selective complexation of metal ions: An overview. React. Funct. Polym. 1998;36:113–123. doi: 10.1016/S1381-5148(98)00016-9. DOI

Cassidy H.G. Adsorption and Chromatography. Interscience Publishers; New York, NY, USA: 1951.

Kantipuly C., Katragadda S., Chow A., Gesser H.D. Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta. 1990;37:491–517. doi: 10.1016/0039-9140(90)80075-Q. PubMed DOI

Reed B.E., Lin W., Matsumoto M.R., Jensen J.N. Physicochemical processes. Water Environ. Res. 1997;69:444–462. doi: 10.2175/106143097X134777. DOI

Markovic S., Stankovic A., Lopicic Z., Lazarevic S., Stojanovic M., Uskokovic D. Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. 2015;3:716–724. doi: 10.1016/j.jece.2015.04.002. DOI

He J., Lu Y., Luo G. Ca (II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb (II) from aqueous solutions. Chem. Eng. J. 2014;244:202–208. doi: 10.1016/j.cej.2014.01.096. DOI

Reddy N.A., Lakshmipathy R., Sarada N.C. Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 2014;53:969–975. doi: 10.1016/j.aej.2014.07.006. DOI

Akkaya G., Güzel F. Bio removal and recovery of Cu (II) and Pb (II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: Kinetic study, equilibrium isotherm, SEM and FTIR analysis. Desalin. Water Treat. 2013;51:7311–7322. doi: 10.1080/19443994.2013.815685. DOI

Kumar B., Smita K., Sánchez E., Stael C., Cumbal L. Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecol. Eng. 2016;93:152–158. doi: 10.1016/j.ecoleng.2016.05.034. DOI

Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999;33:2469–2479. doi: 10.1016/S0043-1354(98)00475-8. DOI

Agarwal M., Singh K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2017;7:387–419.

Atkovska K., Lisichkov K., Ruseska G., Dimitrov A.T., Grozdanov A. Removal of heavy metal ions from wastewater using conventional and nanosorbents: A review. J. Chem. Technol. Metall. 2018;53:202–219.

Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019;290:111197. doi: 10.1016/j.molliq.2019.111197. DOI

Sheth Y., Dharaskar S., Khalid M., Sonawane S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021;43:100951.

Hasanpour M., Hatami M. Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020;284:102247. doi: 10.1016/j.cis.2020.102247. PubMed DOI

Alinnor I.J. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel. 2007;86:853–857. doi: 10.1016/j.fuel.2006.08.019. DOI

Duran A., Soylak M., Tuncel S.A. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J. Hazard. Mater. 2008;155:114–120. doi: 10.1016/j.jhazmat.2007.11.037. PubMed DOI

Kara A. Poly (ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J. Hazard. Mater. 2004;106:93–99. doi: 10.1016/j.jhazmat.2003.08.016. PubMed DOI

Şenkal B.F., Biçak N. Glycidyl methacrylate-based polymer resins with diethylene triamine tetra acetic acid functions for efficient removal of Ca (II) and Mg (II) React. Funct. Polym. 2001;49:151–157. doi: 10.1016/S1381-5148(01)00075-X. DOI

Coutinho F.M.B., Rezende S.M., Barbosa C.C.R. Influence of the morphological structure of macroreticular amidoxime resins on their complexation capacity. React. Funct. Polym. 2001;49:235–248. doi: 10.1016/S1381-5148(01)00079-7. DOI

Atia A.A., Donia A.M., Elwakeel K.Z. Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. React. Funct. Polym. 2005;65:267–275. doi: 10.1016/j.reactfunctpolym.2005.07.001. DOI

Gang D.D., Deng B., Lin L. As (III) removal using an iron-impregnated chitosan sorbent. J. Hazard. Mater. 2010;182:156–161. doi: 10.1016/j.jhazmat.2010.06.008. PubMed DOI

Gupta A., Yunus M., Sankararamakrishnan N. Chitosan- and Iron–Chitosan-Coated Sand Filters: A Cost-Effective Approach for Enhanced Arsenic Removal. Ind. Eng. Chem. Res. 2013;52:2066–2072. doi: 10.1021/ie302428z. DOI

Wang J., Xu W., Chen L., Huang X., Liu J. Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem. Eng. J. 2014;251:25–34. doi: 10.1016/j.cej.2014.04.061. DOI

Liu C., Li Y., Hou Y. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead. Molecules. 2019;24:2704. doi: 10.3390/molecules24152704. PubMed DOI PMC

Kumar A.S.K., Kumar C.U., Rajesh V., Rajesh N. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr (VI) adsorption. Int. J. Biol. Macromol. 2014;66:135–143. doi: 10.1016/j.ijbiomac.2014.02.007. PubMed DOI

Shen C., Chen H., Wu S., Wen Y., Li L., Jiang Z., Li M., Liu W. Highly efficient detoxification of Cr (VI) by chitosan–Fe (III) complex: Process and mechanism studies. J. Hazard. Mater. 2013;244:689–697. doi: 10.1016/j.jhazmat.2012.10.061. PubMed DOI

Liu B., Lv X., Meng X., Yu G., Wang D. Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J. 2013;220:412–419. doi: 10.1016/j.cej.2013.01.071. DOI

Lu Y., He J., Luo G. An improved synthesis of chitosan bead for Pb(II) adsorption. Chem. Eng. J. 2013;226:271–278. doi: 10.1016/j.cej.2013.04.078. DOI

Jiang W., Chen X., Pan B., Zhang Q., Teng L., Chen Y., Liu L. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. J. Hazard. Mater. 2014;276:295–301. doi: 10.1016/j.jhazmat.2014.05.032. PubMed DOI

Negm N.A., El Sheikh R., El-Farargy A.F., Hefni H.H.H., Bekhit M. Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J. Ind. Eng. Chem. 2015;21:526–534. doi: 10.1016/j.jiec.2014.03.015. DOI

Sikder M.T., Mihara Y., Islam M.S., Saito T., Tanaka S., Kurasaki M. Preparation and characterization of chitosan–carboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem. Eng. J. 2014;236:378–387. doi: 10.1016/j.cej.2013.09.093. DOI

Allouche F.-N., Guibal E., Mameri N. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids Surf. Physicochem. Eng. Asp. 2014;446:224–232. doi: 10.1016/j.colsurfa.2014.01.025. DOI

Jaiswal A., Ghsoh S.S., Chattopadhyay A. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal. Langmuir. 2012;28:15687–15696. doi: 10.1021/la3027573. PubMed DOI

Wang Y., Qi Y., Li Y., Wu J., Ma X., Yu C., Ji L. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013;260:9–15. doi: 10.1016/j.jhazmat.2013.05.001. PubMed DOI

Liu D., Li Z., Zhu Y., Li Z., Kumar R. Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: Adsorption and desorption performance. Carbohydr. Polym. 2014;111:469–476. doi: 10.1016/j.carbpol.2014.04.018. PubMed DOI

Kyzas G.Z., Siafaka P.I., Lambropoulou D.A., Lazaridis N.K., Bikiaris D.N. Poly (itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb (II) and Cd (II) Uptake. Langmuir. 2014;30:120–131. doi: 10.1021/la402778x. PubMed DOI

Monier M., Abdel-Latif D.A. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J. Hazard. Mater. 2012;209–210:240–249. doi: 10.1016/j.jhazmat.2012.01.015. PubMed DOI

Aliabadi M., Irani M., Ismaeili J., Piri H., Parnian M.J. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem. Eng. J. 2013;220:237–243. doi: 10.1016/j.cej.2013.01.021. DOI

Heidari A., Younesi H., Mehraban Z., Heikkinen H. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 2013;61:251–263. doi: 10.1016/j.ijbiomac.2013.06.032. PubMed DOI

Tirtom V.N., Dinçer A., Becerik S., Aydemir T., Çelik A. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem. Eng. J. 2012;197:379–386. doi: 10.1016/j.cej.2012.05.059. DOI

Kyzas G.Z., Siafaka P.I., Pavlidou E.G., Chrissafis K.J., Bikiaris D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015;259:438–448. doi: 10.1016/j.cej.2014.08.019. DOI

Milosavljevic N.B., Ristic M.Đ., Peric-Grujic A.A., Filipovic J.M., Strbac S.B., Rakocevic Z.L., Krusic M.T.K. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J. Hazard. Mater. 2011;192:846–854. doi: 10.1016/j.jhazmat.2011.05.093. PubMed DOI

Song X., Li C., Xu R., Wang K. Molecular-Ion-Imprinted Chitosan Hydrogels for the Selective Adsorption of Silver(I) in Aqueous Solution. Ind. Eng. Chem. Res. 2012;51:11261–11265. doi: 10.1021/ie3010989. DOI

Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015;264:56–65. doi: 10.1016/j.cej.2014.11.062. DOI

Aliabadi M., Irani M., Ismaeili J., Najafzadeh S. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2014;45:518–526. doi: 10.1016/j.jtice.2013.04.016. DOI

Al-Wakeel K.Z., Abd El Monem H., Khalil M.M.H. Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. J. Environ. Chem. Eng. 2015;3:179–186. doi: 10.1016/j.jece.2014.11.022. DOI

Mahfouz M.G., Galhoum A.A., Gomaa N.A., Abdel-Rehem S.S., Atia A.A., Vincent T., Guibal E. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem. Eng. J. 2015;262:198–209. doi: 10.1016/j.cej.2014.09.061. DOI

Xu C., Wang J., Yang T., Chen X., Liu X., Ding X. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 2015;121:79–85. doi: 10.1016/j.carbpol.2014.12.024. PubMed DOI

Padilla-Rodriguez A., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L., Perales-Perez O., Roman-Velazquez F.R. Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchem. J. 2015;118:1–11. doi: 10.1016/j.microc.2014.07.011. DOI

Zhou L., Xu J., Liang X., Liu Z. Adsorption of platinum (IV) and palladium (II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010;182:518–524. doi: 10.1016/j.jhazmat.2010.06.062. PubMed DOI

Yan L., Yin H., Zhang S., Leng F., Nan W., Li H. Biosorption of inorganic and organic arsenic from aqueous solution by Acid thiobacillus ferrooxidans BY-3. J. Hazard. Mater. 2010;178:209–217. doi: 10.1016/j.jhazmat.2010.01.065. PubMed DOI

Han W., Fu F., Cheng Z., Tang B., Wu S. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J. Hazard. Mater. 2016;302:437–446. doi: 10.1016/j.jhazmat.2015.09.041. PubMed DOI

Raval N.P., Shah P.U., Shah N.K. Adsorptive removal of nickel (II) ions from aqueous environment: A review. J. Environ. Manag. 2016;179:1–20. doi: 10.1016/j.jenvman.2016.04.045. PubMed DOI

Koedrith P., Kim H., Weon J.-I., Seo Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health. 2013;216:587–598. doi: 10.1016/j.ijheh.2013.02.010. PubMed DOI

Karnitz O., Jr., Gurgel L.V.A., De Melo J.C.P., Botaro V.R., Melo T.M.S., de Freitas Gil R.P., Gil L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007;98:1291–1297. doi: 10.1016/j.biortech.2006.05.013. PubMed DOI

Sugunan A., Thanachayanont C., Dutta J., Hilborn J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater. 2005;6:335. doi: 10.1016/j.stam.2005.03.007. DOI

Krystofova O., Shestivska V., Galiova M., Novotny K., Kaiser J., Zehnalek J., Babula P., Opatrilova R., Adam V., Kizek R. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors. 2009;9:5040–5058. doi: 10.3390/s90705040. PubMed DOI PMC

Demim S., Drouiche N., Aouabed A., Benayad T., Dendene-Badache O., Semsari S. Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol. Eng. 2013;61:426–435. doi: 10.1016/j.ecoleng.2013.10.016. DOI

Filipič M. Mechanisms of cadmium induced genomic instability. Mutat. Res. Mol. Mech. Mutagen. 2012;733:69–77. doi: 10.1016/j.mrfmmm.2011.09.002. PubMed DOI

Atieh M.A., Bakather O.Y., Tawabini B.S., Bukhari A.A., Khaled M., Alharthi M., Fettouhi M., Abuilaiwi F.A. Removal of Chromium (III) from Water by Using Modified and Nonmodified Carbon Nanotubes. J. Nanomater. 2010:1–9. doi: 10.1155/2010/232378. DOI

Vaiopoulou E., Gikas P. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Water Res. 2012;46:549–570. doi: 10.1016/j.watres.2011.11.024. PubMed DOI

Malamis S., Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013;252–253:428–461. doi: 10.1016/j.jhazmat.2013.03.024. PubMed DOI

Mobasherpour I., Salahi E., Ebrahimi M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Res. Chem. Intermed. 2012;38:2205–2222. doi: 10.1007/s11164-012-0537-6. DOI

Yang S., Li J., Shao D., Hu J., Wang X. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 2009;166:109–116. doi: 10.1016/j.jhazmat.2008.11.003. PubMed DOI

Acharya J., Sahu J.N., Mohanty C.R., Meikap B.C. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J. 2009;149:249–262. doi: 10.1016/j.cej.2008.10.029. DOI

Cechinel M.A.P., de Souza A.A.U. Study of lead (II) adsorption onto activated carbon originating from cow bone. J. Clean. Prod. 2014;65:342–349. doi: 10.1016/j.jclepro.2013.08.020. DOI

Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47:3931–3946. doi: 10.1016/j.watres.2012.09.058. PubMed DOI

Akar S.T., Akar T., Kaynak Z., Anilan B., Cabuk A., Tabak Ö., Demir T.A., Gedikbey T. Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy. 2009;97:98–104. doi: 10.1016/j.hydromet.2009.01.009. DOI

Ding Y., Shen S.Z., Sun H., Sun K., Liu F. Synthesis of l-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens. Actuators B Chem. 2014;203:35–43. doi: 10.1016/j.snb.2014.06.054. DOI

Ennigrou D.J., Ali M.B.S., Dhahbi M. Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination. 2014;343:82–87. doi: 10.1016/j.desal.2013.11.006. DOI

Awual M.R., Yaita T., El-Safty S.A., Shiwaku H., Suzuki S., Okamoto Y. Copper (II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 2013;221:322–330. doi: 10.1016/j.cej.2013.02.016. DOI

Tang W.W., Zeng G.M., Gong J.L., Liang J., Xu P., Zhang C., Huang B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014;468–469:1014–1027. doi: 10.1016/j.scitotenv.2013.09.044. PubMed DOI

Cristian P., Violeta P., Anita-Laura R., Raluca I., Alexandrescu E., Andrei S., Daniela I.-E., Raluca M.A., Cristina M., Ioana C.A. Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process. Eng. 2015;8:1–10. doi: 10.1016/j.jwpe.2015.08.001. DOI

Ojedokun A.T., Bello O.S. Sequestering heavy metals from wastewater using cow dung. Water Resour. Ind. 2016;13:7–13. doi: 10.1016/j.wri.2016.02.002. DOI

Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008;157:220–229. doi: 10.1016/j.jhazmat.2008.01.024. PubMed DOI

Vunain E., Mishra A., Mamba B. Dendrimers, mesoporous silicas and chitosan-based nano sorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016;86:570–586. doi: 10.1016/j.ijbiomac.2016.02.005. PubMed DOI

Owsik I.A., Kolarz B.N., Jermakowicz-Bartkowiak D., Jezierska J. Synthesis and characterization of resins with ligands containing guanidinine derivatives. Cu (II) sorption and coordination properties. Polymer. 2003;44:5547–5558.

Huang Y., Zeng X., Guo L., Lan J., Zhang L., Cao D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018;194:462–469. doi: 10.1016/j.seppur.2017.11.068. DOI

Bharathi K.S., Ramesh S.T. Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci. 2013;3:773–790. doi: 10.1007/s13201-013-0117-y. DOI

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI

Freundlich H. Over the adsorption in solution. Z. Phys. Chem. 1906;57:385–470.

Atkins P., Paula J. Atkins’ Physical Chemistry. 9th ed. OUP Oxford; Oxford, UK: 2010. The rate of chemical reactions.

Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006;97:1061–1085. doi: 10.1016/j.biortech.2005.05.001. PubMed DOI

Liu Y. Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data. 2009;54:1981–1985. doi: 10.1021/je800661q. DOI

Dubey R., Bajpai J., Bajpai A.K. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ. Nanotechnol. Monit. Manag. 2016;6:32–44. doi: 10.1016/j.enmm.2016.06.008. DOI

Razzaz A., Ghorban S., Hosayni L., Irani M., Aliabadi M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 2016;58:333–343. doi: 10.1016/j.jtice.2015.06.003. DOI

Kim E.J., Lee C.S., Chang Y.Y., Chang Y.S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl. Mater. Interfaces. 2013;5:9628–9634. doi: 10.1021/am402615m. PubMed DOI

Huang S.H., Chen D.H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009;163:174–179. doi: 10.1016/j.jhazmat.2008.06.075. PubMed DOI

Gupta A. Preparation of ethyleneamine functionalized crosslinked poly (acrylonitrile-ethylene glycol-dimethacrylate) chelating resins for adsorption of lead ions. Sep. Sci. Technol. 2017;52:447–455. doi: 10.1080/01496395.2016.1264961. DOI

Vilar V.J., Botelho C.M., Boaventura R.A. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry. J. Hazard. Mater. 2007;143:396–408. doi: 10.1016/j.jhazmat.2006.09.046. PubMed DOI

Kesenci K., Say R., Denizli A. Removal of heavy metal ions from water by using poly (ethyleneglycol dimethacrylate-co-acrylamide) beads. Eur. Polym. J. 2002;38:1443–1448. doi: 10.1016/S0014-3057(01)00311-1. DOI

Kumari S., Rath P., Kumar A.S.H., Tiwari T.N. Removal of hexavalent chromium using chitosan prepared from shrimp shells. Afr. J. Biotechnol. 2016;15:50–54.

Verma A., Thakur S., Mamba G., Gupta R.K., Thakur P., Thakur V.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 2020;148:1130–1139. doi: 10.1016/j.ijbiomac.2020.01.142. PubMed DOI

Vakili M., Deng S., Cagnetta G., Wang W., Meng P., Liu D., Yu G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019;224:373–387. doi: 10.1016/j.seppur.2019.05.040. DOI

Momina M., Shahadat M., Isamil S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018;8:24571–24587. doi: 10.1039/C8RA04290J. PubMed DOI PMC

Qu R., Wang C., Sun C., Ji C., Cheng G., Wang X., Xu G. Syntheses and adsorption properties for Hg2+ of chelating resin of crosslinked polystyrene-supported 2,5-dimercapto-1,3,4-thiodiazole. J. Appl. Polym. Sci. 2004;92:1646–1652. doi: 10.1002/app.20109. DOI

Saglam A., Bektaş S., Patır S., Genç Ö., Denizli A. Novel metal complexing ligand: Thiazolidine carrying poly (hydroxyethyl methacrylate) microbeads for removal of cadmium (II) and lead (II) ions from aqueous solutions. React. Funct. Polym. 2001;47:185–192. doi: 10.1016/S1381-5148(01)00026-8. DOI

Srivastava S.K., Singh A.K., Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor—A paper industry waste material. Environ. Technol. 1994;15:353–361. doi: 10.1080/09593339409385438. DOI

Rorrer G.L., Hsien T.Y., Way J.D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind. Eng. Chem. Res. 1993;32:2170–2178. doi: 10.1021/ie00021a042. DOI

Volesky B., Prasetyo I. Cadmium removal in a biosorption column. Biotechnol. Bioeng. 1994;43:1010–1015. doi: 10.1002/bit.260431103. PubMed DOI

Holan Z.R., Volesky B., Prasetyo I. Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 1993;41:819–825. doi: 10.1002/bit.260410808. PubMed DOI

Bricka R.M., Hill D.O. Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes. ASTM International; West Conshohocken, PA, USA: 1989. Metal immobilization by solidification of hydroxide and xanthate sludges.

Flynn C.M., Carnahan T.G., Lindstrom R.E., Lindstrom R.E. Adsorption of Heavy Metal Ions by Xanthated Sawdust. Volume 8427 Department of the Interior, Bureau of Mines; Washington, DC, USA: 1979.

Tare V., Chaudhari S., Jawed M. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water Sci. Technol. 1992;26:237–246. doi: 10.2166/wst.1992.0404. DOI

Kral P., Klímek P., Mishra P.K., Rademacher P., Wimmer R. Preparation and Characterization of Cork Layered Composite Plywood Boards. BioResources. 2014;9:1977–1985. doi: 10.15376/biores.9.2.1977-1985. DOI

Kumar B., Smita K., Flores L.C. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 2017;10:S2335–S2342. doi: 10.1016/j.arabjc.2013.08.010. DOI

Masri M.S., Friedman M. Effect of chemical modification of wool on metal ion binding. J. Appl. Polym. Sci. 1974;18:2367–2377. doi: 10.1002/app.1974.070180815. DOI

Orhan Y., Büyükgüngör H. The Removal of Heavy Metals by Using Agricultural Wastes. Water Sci. Technol. 1993;28:247–255. doi: 10.2166/wst.1993.0114. DOI

Randall J.M., Hautala E., McDonald G. Binding of heavy metal ions by formaldehyde-polymerized peanut skins. J. Appl. Polym. Sci. 1978;22:379–387. doi: 10.1002/app.1978.070220207. DOI

Mishra P.K., Giagli K., Tsalagkas D., Mishra H., Talegaonkar S., Gryc V., Wimmer R. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat. Nanotechnol. 2018;12:13–21. doi: 10.2174/1872210511666170808111512. PubMed DOI

Bryant P.S., Petersen J.N., Lee J.M., Brouns T.M. Sorption of heavy metals by untreated red fir sawdust. Appl. Biochem. Biotechnol. 1992;34–35:777–788. doi: 10.1007/BF02920596. DOI

Mishra P., Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer-by-layer deposition. Ultrason. Sonochem. 2017;35:45–50. doi: 10.1016/j.ultsonch.2016.09.001. PubMed DOI

Celik A., Demirbaş A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sources. 2005;27:1167–1177. doi: 10.1080/00908310490479583. DOI

Siddiqui L., Bag J., Mittal D., Leekha A., Mishra H., Mishra M., Verma A.K., Mishra P.K., Ekielski A., Iqbal Z., et al. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol. 2020;152:786–802. doi: 10.1016/j.ijbiomac.2020.02.311. PubMed DOI

Xie B., Hou Y., Li Y. Modified lignin nanosphere adsorbent for lead and copper ions. BioResources. 2021;16:249. doi: 10.15376/biores.16.1.249-262. DOI

Zhang Y., Ni S., Wang X., Zhang W., Lagerquist L., Qin M., Willfor S., Xu C., Fatehi P. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem. Eng. J. 2019;372:82–91. doi: 10.1016/j.cej.2019.04.111. DOI

Supanchaiyamat N., Jetsrisuparb K., Knijnenburg J.T.N., Tsang D.C.W., Hunt A.J. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour. Technol. 2019;272:570–581. doi: 10.1016/j.biortech.2018.09.139. PubMed DOI

Berkeley R. RCW Berkeley, CW Goody and DC Elwood. Academic Press; New York, NY, USA: 1979. Chitin, Chitosan and their degradative enzymes in microbial polysaccharides and polysaccharides.

Yang T.C., Zall R.R. Absorption of metals by natural polymers generated from seafood processing wastes. Ind. Eng. Chem. Prod. Res. Dev. 1984;23:168–172. doi: 10.1021/i300013a033. DOI

Kurita K., Sannan T., Iwakura Y. Studies on chitin. VI. Binding of metal cations. J. Appl. Polym. Sci. 1979;23:511–515. doi: 10.1002/app.1979.070230221. DOI

Kurita K., Koyama Y., Taniguchi A. Studies on chitin. IX. Crosslinking of water-soluble chitin and evaluation of the products as adsorbents for cupric ion. J. Appl. Polym. Sci. 1986;31:1169–1176. doi: 10.1002/app.1986.070310502. DOI

Bertoni F.A., González J.C., García S.I., Sala L.F., Bellu S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr. Polym. 2018;180:55–62. doi: 10.1016/j.carbpol.2017.10.027. PubMed DOI

Hsien T.Y., Rorrer G.L. Effects of Acylation and Crosslinking on the Material Properties and Cadmium Ion Adsorption Capacity of Porous Chitosan Beads. Sep. Sci. Technol. 1995;30:2455–2475. doi: 10.1080/01496399508021395. DOI

Ishii H., Minegishi M., Lavitpichayawong B., Mitani T. Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. Int. J. Biol. Macromol. 1995;17:21–23. doi: 10.1016/0141-8130(95)93513-W. PubMed DOI

Mohanasrinivasan V., Mishra M., Paliwal J.S., Singh S.K., Selvarajan E., Suganthi V., Devi C.S. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech. 2013;4:167–175. doi: 10.1007/s13205-013-0140-6. PubMed DOI PMC

Unagolla J.M., Adikary S.U. Adsorption characteristics of cadmium and lead heavy metals into locally synthesized Chitosan Biopolymer. Trop. Agric. Res. 2015;26:395. doi: 10.4038/tar.v26i2.8102. DOI

Kuang S.P., Wang Z.Z., Liu J., Wu Z.C. Preparation of diethylene-tetramine grafted magnetic chitosan for adsorption of Pb (II) ion from aqueous solutions. J. Hazard. Mater. 2013;260:210–219. doi: 10.1016/j.jhazmat.2013.05.019. PubMed DOI

Suresh K.V., Daniel S.K., Ruckmani K., Sivakumar M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl. Nanosci. 2015;6:277–285.

Lv L., Chen N., Feng C., Zhang J., Li M. Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly (vinyl alcohol) particles. RSC Adv. 2017;7:27992–28000. doi: 10.1039/C7RA02810E. DOI

Leusch A., Holan Z.R., Volesky B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 1995;62:279–288. doi: 10.1002/jctb.280620311. DOI

Russo R., Malinconico M., Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules. 2007;8:3193–3197. doi: 10.1021/bm700565h. PubMed DOI

Hassan A.F., Abdel-Mohsen A.M., Elhadidy H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014;68:125–130. doi: 10.1016/j.ijbiomac.2014.04.006. PubMed DOI

Vu H.C., Dwivedi A.D., Le T.T., Seo S.H., Kim E.J., Chang Y.S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As (V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J. 2017;307:220–229. doi: 10.1016/j.cej.2016.08.058. DOI

Soltani R.D.C., Khorramabadi G.S., Khataee A.R., Jorfi S. Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 2014;45:973–980. doi: 10.1016/j.jtice.2013.09.014. DOI

Papageorgiou S.K., Kouvelos E.P., Katsaros F.K. Calcium alginate beads from Laminaria digitata for the removal of Cu+ 2 and Cd+ 2 from dilute aqueous metal solutions. Desalination. 2008;224:293–306. doi: 10.1016/j.desal.2007.06.011. DOI

Chakraborty S., Tare V. Role of various parameters in synthesis of insoluble agrobased xanthates for removal of copper from wastewater. Bioresour. Technol. 2006;97:2407–2413. doi: 10.1016/j.biortech.2005.10.010. PubMed DOI

Santiago I., Worland V., Cazares E., Cadena F. 47th Purdue Industrial Waste Conference Proceedings. CRC Press; Boca Raton, FL, USA: 1992. Adsorption of hexavalent chromium onto tailored zeolites; pp. 669–710.

He K., Chen Y., Tang Z., Hu Y. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 2015;23:2778–2788. doi: 10.1007/s11356-015-5422-6. PubMed DOI

Erdem E., Karapinar N., Donat R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004;280:309–314. doi: 10.1016/j.jcis.2004.08.028. PubMed DOI

Chen G., Shah K.J., Shi L., Chiang P.C. Removal of Cd (II) and Pb (II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms. Appl. Surf. Sci. 2017;409:296–305. doi: 10.1016/j.apsusc.2017.03.022. DOI

Griffin R.A., Shimp N.F. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. Volume 1 Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory; Cincinnati, OH, USA: 1978.

Sharma Y.C., Gupta G.S., Prasad G., Rupainwar D.C. Use of wollastonite in the removal of Ni (II) from aqueous solutions. Water. Air. Soil Pollut. 1990;49:69–79. doi: 10.1007/BF00279511. DOI

Chaturvedi A., Pathak K., Singh V. Fluoride removal from water by adsorption on China clay. Appl. Clay Sci. 1988;3:337–346. doi: 10.1016/0169-1317(88)90024-5. DOI

Pradas E.G., Sánchez M.V., Cruz F.C., Viciana M.S., Pérez M.F. Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Technol. Biotechnol. 1994;59:289–295. doi: 10.1002/jctb.280590312. DOI

Kunin R. Ion. Exchange Resins. John Wiley & Sons Inc.; New York, NY, USA: 1958. (No. 541.2/K96)

Song X., Li L., Zhou L., Chen P. Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion. Chem. Eng. Res. Des. 2018;136:581–592. doi: 10.1016/j.cherd.2018.06.025. DOI

Jokar M., Mirghaffari N., Soleimani M., Jabbari M. Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J. Water Process. Eng. 2019;28:88–99. doi: 10.1016/j.jwpe.2019.01.007. DOI

Zahed S.S.H., Khanlari S., Mohammadi T. Hydrous metal oxide incorporated polyacrylonitrile-based nanocomposite membranes for Cu(II) ions removal. Sep. Purif. Technol. 2019;213:151–161. doi: 10.1016/j.seppur.2018.12.027. DOI

Chitpong N., Husson S.M. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017;179:94–103. doi: 10.1016/j.seppur.2017.02.009. DOI

Moghbeli M.R., Khajeh A., Alikhani M. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 2017;309:552–562. doi: 10.1016/j.cej.2016.10.048. DOI

Murray A., Örmeci B. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters. J. Environ. Sci. 2019;75:247–254. doi: 10.1016/j.jes.2018.03.035. PubMed DOI

Beldar A., Tank R., Saxena A., Gupta D. Synthesis of styrene-DVB copolymers in presence of diluents. J. Polym. Mater. 2006;23:415–421.

Prasad H.H., Popat K.M., Anand P.S. Synthesis of Crosslinked Methacrylic Acid-co-ethyleneglycol Dimethacrylate Polymers for the Removal of Copper and Nickel from Water. Indian J. Chem. Technol. 2002;9:385–392.

Reddy K., Gaur P., Anand P., Dasare B. Synthesis and characterization of weakly acidic porous cation exchangers based on methacrylic acid. J. Polym. Mater. 1989;6:257–262.

Etorki A., Walli M. Water Pollution IX. WIT Press; Ashurst, UK: 2008. Removal of mercury (II) from wastewater using poly (vinyl pyrrolidinone)

Denizli A., Garipcan B., Karabakan A., Senoz H. Synthesis and characterization of poly (hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions. Mater. Sci. Eng. 2005;25:448–454. doi: 10.1016/j.msec.2004.12.001. DOI

Ma N., Yang Y., Chen S., Zhang Q. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. J. Hazard. Mater. 2009;171:288–293. doi: 10.1016/j.jhazmat.2009.06.001. PubMed DOI

Kalaivani S.S., Muthukrishnaraj A., Sivanesan S., Ravikumar L. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process. Saf. Environ. Prot. 2016;104:11–23. doi: 10.1016/j.psep.2016.08.010. DOI

Feng Y., Wang Y., Wang Y., Liu S., Jiang J., Cao C., Yao J. Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. J. Colloid Interface Sci. 2017;502:52–58. doi: 10.1016/j.jcis.2017.04.086. PubMed DOI

Saeed K., Haider S., Oh T.J., Park S.Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 2008;322:400–405. doi: 10.1016/j.memsci.2008.05.062. DOI

Kavaklı P.A., Yılmaz Z., Şen M. Investigation of Heavy Metal Ion Adsorption Characteristics of Poly (N, N Dimethylamino Ethylmethacrylate) Hydrogels. Sep. Sci. Technol. 2007;42:1245–1254. doi: 10.1080/01496390601120490. DOI

Eisazadeh H. Removal of arsenic in water using polypyrrole and its composites. Appl. Sci. J. 2008;3:10–13.

Zhang J., Chen Y., Zhao W., Li Y. Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism. R. Soc. Open Sci. 2018;5:181013. doi: 10.1098/rsos.181013. PubMed DOI PMC

Houari B., Louhibi S., Tizaoui K., Boukli-hacene L., Benguella B., Roisnel T., Dorcet V. New synthetic material removing heavy metals from aqueous solutions and wastewater. Arab. J. Chem. 2019;12:5040–5048. doi: 10.1016/j.arabjc.2016.11.010. DOI

Kim W., Shin H., Maeng K. Complexation characteristics of poly (acrylamidoxime) chelating resins using inductively coupled plasma atomic emission spectroscopy (Korea) Polymer. 1982;6:119–125.

Liu C.Y., Sun P.J. Preparation and analytical properties of a chelating resin containing cysteine groups. Anal. Chim. Acta. 1981;132:187–193. doi: 10.1016/S0003-2670(01)93889-9. DOI

Trochimczuk A.W. Chelating resins with N-substituted diamides of malonic acid as ligands. Eur. Polym. J. 1998;34:1657–1662. doi: 10.1016/S0014-3057(98)00018-4. DOI

Pekel N., Şahiner N., Guven O. Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiat. Phys. Chem. 2000;59:485–491. doi: 10.1016/S0969-806X(00)00308-X. DOI

Büyüktuncel E., Bektas S., Genç Ö., Denizli A. Poly (vinylalcohol) coated/Cibacron Blue F3GA-attached polypropylene hollow fiber membranes for removal of cadmium ions from aquatic systems. React. Funct. Polym. 2001;47:1–10. doi: 10.1016/S1381-5148(00)00054-7. DOI

Ali A.E.H., Shawky H.A., Abd El Rehim H.A., Hegazy E.A. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur. Polym. J. 2003;39:2337–2344.

Kavaklı P.A., Guven O. Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 2004;93:1705–1710. doi: 10.1002/app.20616. DOI

Sivadasan Chettiar K., Sreekumar K. Polystyrene-supported thiosemicarbazone-transition metal complexes: Synthesis and application as heterogeneous catalysts. Polym. Int. 1999;48:455–460. doi: 10.1002/(SICI)1097-0126(199906)48:6<455::AID-PI166>3.0.CO;2-F. DOI

Kaşgöz H., Özgümüş S., Orbay M. Preparation of modified polyacrylamide hydrogels and application in removal of Cu (II) ion. Polymer. 2001;42:7497–7502. doi: 10.1016/S0032-3861(01)00290-7. DOI

Ortiz-Palacios J., Cardoso J., Manero O. Production of macroporous resins for heavy-metal removal. I. Nonfunctionalized polymers. J. Appl. Polym. Sci. 2007;107:2203–2210. doi: 10.1002/app.27243. DOI

Cardoso J., Ortiz-Palacios J., Manero O. Production of microporous resins for heavy-metal removal. II. Functionalized polymers. J. Appl. Polym. Sci. 2007;107:3644–3653. doi: 10.1002/app.27422. DOI

El-Hamshary H., El-Garawany M., Assubaie F.N., Al-Eed M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci. 2003;89:2522–2526. doi: 10.1002/app.12305. DOI

Say R., Emir S., Garipcan B., Patir S., Denizli A. Novel methacryloylamidophenylalanine functionalized porous chelating beads for adsorption of heavy metal ions. Adv. Polym. Technol. 2003;22:355–364. doi: 10.1002/adv.10062. DOI

Bilba N., Bilba D., Moroi G. Copper (ii) and mercury (ii) retention properties of a polyacrylamidoxime chelating fiber. Environ. Eng. Manag. J. 2006;5:297–305. doi: 10.30638/eemj.2006.021. DOI

Hazer O., Kartal S. Synthesis of a Novel Chelating Resin for the Separation and Preconcentration of Uranium (VI) and Its Spectrophotometric Determination. Anal. Sci. 2009;25:547–551. doi: 10.2116/analsci.25.547. PubMed DOI

Uguzdogan E., Denkbaş E.B., Özturk E., Tuncel S.A., Kabasakal O.S. Preparation and characterization of polyethyleneglycolmethacrylate (PEGMA)-co-vinylimidazole (VI) microspheres to use in heavy metal removal. J. Hazard. Mater. 2009;162:1073–1080. doi: 10.1016/j.jhazmat.2008.05.145. PubMed DOI

Jing X., Liu F., Yang X., Ling P., Li L., Long C., Li A. Adsorption performances and mechanisms of the newly synthesized N, N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J. Hazard. Mater. 2009;167:589–596. doi: 10.1016/j.jhazmat.2009.01.020. PubMed DOI

Amoyaw P.A., Williams M., Bu X.R. The fast removal of low concentration of cadmium(II) from aqueous media by chelating polymers with salicylaldehyde units. J. Hazard. Mater. 2009;170:22–26. doi: 10.1016/j.jhazmat.2009.05.028. PubMed DOI

Denizli A., Salih B., Pişkin E. Alkali blue 6B-attached poly (EGDMA-HEMA) microbeads for removal of heavy-metal ions. React. Funct. Polym. 1996;29:11–19. doi: 10.1016/1381-5148(95)00100-X. DOI

Denizli A., Salih B., Pişkin E. New sorbents for removal of heavy metal ions: Diamine-glow-discharge treated polyhydroxyethylmethacrylate microspheres. J. Chromatogr. 1997;773:169–178. doi: 10.1016/S0021-9673(97)00187-8. DOI

Arsalani N., Hossein Z.M. Synthesis and characterization of EDTA functionalized polyacrylonitriles and their metal complexes. Iran. Polym. J. 2005;14:345–352.

Jermakowicz-Bartkowiak D., Kolarz B.N., Serwin A. Sorption of precious metals from acid solutions by functionalised vinyl benzyl chloride–acrylonitryle–divinylbenzene copolymers bearing amino and guanidine ligands. React. Funct. Polym. 2005;65:135–142. doi: 10.1016/j.reactfunctpolym.2004.11.010. DOI

Memon J.R., Memon S.Q., Bhanger M.I., Khuhawar M.Y., Allen G.C., Memon G.Z., Pathan A.G. Efficiency of Cd (II) removal from aqueous media using chemically modified polystyrene foam. Eur. Polym. J. 2008;44:1501–1511. doi: 10.1016/j.eurpolymj.2008.02.018. DOI

Tharanitharan V., Srinivasan K. Removal of Pb (II) from Aqueous Solutions by Using Dioctyl Sodium Sulphosuccinate-EDTA Modified Amberlite XAD-7HP Resin. Indian J. Chem. Technol. 2009;16:417–425.

Solangi I.B., Memon S., Bhanger M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009;171:815–819. doi: 10.1016/j.jhazmat.2009.06.072. PubMed DOI

El-Menshawy A.M., Kenawy I.M., El-Asmy A.A. Modification of chloromethylated polystyrene with 2-mercabtobenzothiazole for application as a new sorbent for preconcentration and determination of Ag+ from different matrices. J. Hazard. Mater. 2010;173:523–527. doi: 10.1016/j.jhazmat.2009.08.116. PubMed DOI

Sun C., Qu R., Xu Q., Chen H., Ji C., Wang C., Sun Y., Cheng G. Preparation of crosslinked polystyrene-supported ethylenediamine via a S-containing spacer and adsorption properties towards metal ions. Eur. Polym. J. 2007;43:1501–1509. doi: 10.1016/j.eurpolymj.2007.01.005. DOI

Haratake M., Yasumoto K., Ono M., Akashi M., Nakayama M. Synthesis of hydrophilic macroporous chelating polymers and their versatility in the preconcentration of metals in seawater samples. Anal. Chim. Acta. 2006;561:183–190. doi: 10.1016/j.aca.2006.01.042. DOI

Atia A.A., Donia A.M., Abou-El-Enein S.A., Yousif A.M. Studies on uptake behaviour of copper (II) and lead (II) by amine chelating resins with different textural properties. Sep. Purif. Technol. 2003;33:295–301. doi: 10.1016/S1383-5866(03)00089-3. DOI

Choi S.H., Nho Y.C., Kim G.T. Adsorption of Pb2+ and Pd2+ on polyethylene membrane with amino group modified by radiation-induced graft copolymerization. J. Appl. Polym. Sci. 1999;71:643–650. doi: 10.1002/(SICI)1097-4628(19990124)71:4<643::AID-APP16>3.0.CO;2-8. DOI

Atia A.A., Donia A.M., El-Enein S.A., Yousif A.M. Effect of Chain Length of Aliphatic Amines Immobilized on a Magnetic Glycidyl Methacrylate Resin towards the Uptake Behavior of Hg (II) from Aqueous Solutions. Sep. Sci. Technol. 2007;42:403–420. doi: 10.1080/01496390601069978. DOI

Bicak N., Sherrington D.C., Sungur S., Tan N. A glycidyl methacrylate-based resin with pendant urea groups as a high-capacity mercury specific sorbent. React. Funct. Polym. 2003;54:141–147. doi: 10.1016/S1381-5148(02)00189-X. DOI

Şenkal B.F., Yavuz E. Crosslinked poly (glycidyl methacrylate)-based resin for removal of mercury from aqueous solutions. J. Appl. Polym. Sci. 2006;101:348–352. doi: 10.1002/app.23798. DOI

Chen C.Y., Lin M.S., Hsu K.R. Recovery of Cu (II) and Cd (II) by a chelating resin containing aspartate groups. J. Hazard. Mater. 2008;152:986–993. doi: 10.1016/j.jhazmat.2007.07.074. PubMed DOI

Nastasovic A., Jovanovic S., Jakovljevic D., Stankovic S., Onjia A. Noble metal binding on macroporous poly (GMA-co-EGDMA) modified with ethylenediamine. J. Serb. Chem. Soc. 2004;69:455–460. doi: 10.2298/JSC0406455N. DOI

Gupta A., Jain R., Gupta D.C. Studies on uptake behavior of Hg (II) and Pb (II) by amine modified glycidyl methacrylate–styrene–N, N′-methylenebisacrylamide terpolymer. React. Funct. Polym. 2015;93:22–29. doi: 10.1016/j.reactfunctpolym.2015.05.005. DOI

Azanova V.V., Hradil J., Švec F., Pelzbauer Z., Panarin E.F. Reactive polymers. 60. glycidyl methacrylate-styrene-ethylene dimethacrylate terpolymers modified with strong-acid groups. React. Polym. 1990;12:247–260.

Lindsay D., Sherrington D.C. Synthesis of chelating resins based on poly(styrene-co-divinylbenzene) and poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) React. Polym. Ion. Exch. Sorbents. 1985;3:327–339. doi: 10.1016/0167-6989(85)90021-2. DOI

Verweij P.D., van der Geest J.S.N., Driessen W.L., Reedijk J., Sherrington D.C. Metal uptake by a novel benzimidazole ligand immobilized onto poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) React. Polym. 1992;18:191–201. doi: 10.1016/0923-1137(92)90649-M. DOI

Bayramoğlu G., Arica M.Y. Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p(GMA-MMA-EGDMA) beads. J. Hazard. Mater. 2007;144:449–457. doi: 10.1016/j.jhazmat.2006.10.058. PubMed DOI

Atia A.A., Donia A.M., Awed H.A. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. J. Hazard. Mater. 2008;155:100–108. doi: 10.1016/j.jhazmat.2007.11.035. PubMed DOI

Liu C., Bai R., San Ly Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 2008;42:1511–1522. doi: 10.1016/j.watres.2007.10.031. PubMed DOI

Mohy-Eldin M.S., Elkady M.F., Abu-Saied M.A., Rahman A.M.A., Soliman E.A., Elzatahry A.A., Youssef M.E. Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly (glycidyl methacrylate) cation exchanger: Kinetic and equilibrium studies. J. Appl. Polym. Sci. 2010;118:3111–3122. doi: 10.1002/app.32587. DOI

Nastasovic A., Sandic Z., Surucic L., Maksin D., Jakovljevic D., Onjia A. Kinetics of hexavalent chromium sorption on amino-functionalized macroporous glycidyl methacrylate copolymer. J. Hazard. Mater. 2009;171:153–159. doi: 10.1016/j.jhazmat.2009.05.116. PubMed DOI

Anirudhan T.S., Jalajamony S., Divya L. Efficiency of Amine-Modified Poly (glycidyl methacrylate)-Grafted Cellulose in the Removal and Recovery of Vanadium(V) from Aqueous Solutions. Ind. Eng. Chem. Res. 2009;48:2118–2124. doi: 10.1021/ie8000869. DOI

Gokila S., Gomathi T., Sudha P.N., Anil S. Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int. J. Biol. Macromol. 2017;104:1459–1468. doi: 10.1016/j.ijbiomac.2017.05.117. PubMed DOI

Liu C., Lei X., Wang L., Jia J., Liang X., Zhao X., Zhu H. Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes. Chem. Eng. J. 2017;327:60–70. doi: 10.1016/j.cej.2017.06.070. DOI

Lam B., Deon S., Morin-Crini N., Crini G., Fievet P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod. 2018;171:927–933. doi: 10.1016/j.jclepro.2017.10.090. DOI

Li Z., Kong Y., Ge Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem. Eng. J. 2015;270:229–234. doi: 10.1016/j.cej.2015.01.123. DOI

Ali A., Mannan A., Hussain I., Hussain I., Zia M. Effective removal of metal ions from aqueous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ. Nanotechnol. Monit. Manag. 2018;9:1–11.

Zhou G., Luo J., Liu C., Chu L., Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018;131:246–254. doi: 10.1016/j.watres.2017.12.067. PubMed DOI

Racho P., Phalathip P. Modified Nylon Fibers with Amino Chelating Groups for Heavy Metal Removal. Energy Procedia. 2017;118:195–200. doi: 10.1016/j.egypro.2017.07.026. DOI

Argun M.E., Dursun S. Removal of heavy metal ions using chemically modified adsorbents. J. Int. Environ. Appl. Sci. 2006;1:27–40.

Chen Y., Zhao W., Wang H., Li Y., Li C. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance. R. Soc. Open Sci. 2018;5:171665. doi: 10.1098/rsos.171665. PubMed DOI PMC

Ko D., Lee J.S., Patel H.A., Jakobsen M.H., Hwang Y., Yavuz C.T., Hansen H.C.B., Andersen H.R. Selective removal of heavy metal ions by disulfide linked polymer networks. J. Hazard. Mater. 2017;332:140–148. doi: 10.1016/j.jhazmat.2017.03.007. PubMed DOI

Huang Y., Wu D., Wang X., Huang W., Lawless D., Feng X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 2016;158:124–136. doi: 10.1016/j.seppur.2015.12.008. DOI

Chen H., Zhao Y., Yang Q., Yan Q. Preparation of poly-ammonium/sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments. J. Environ. Chem. Eng. 2018;6:2344–2354. doi: 10.1016/j.jece.2018.03.029. DOI

Kistler S.S.J.N. Coherent expanded aerogels and jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI

Maleki H., Hüsing N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B Environ. 2018;221:530–555. doi: 10.1016/j.apcatb.2017.08.012. DOI

Gurav J.L., Jung I.K., Park H.H., Kang E.S., Nadargi D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010;2010 doi: 10.1155/2010/409310. DOI

Kadirvelu K., Goel J., Rajagopal C. Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. J. Hazard. Mater. 2008;153:502–507. doi: 10.1016/j.jhazmat.2007.08.082. PubMed DOI

Meena A.K., Mishra G.K., Rai P.K., Rajagopal C., Nagar P.N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 2005;122:161–170. doi: 10.1016/j.jhazmat.2005.03.024. PubMed DOI

Goel J., Kadirvelu K., Rajagopal C., Garg V.K. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2005;80:469–476. doi: 10.1002/jctb.1212. DOI

Goel J., Kadirvelu K., Rajagopal C. Competitive sorption of Cu (II), Pb (II) and Hg (II) ions from aqueous solution using coconut shell-based activated carbon. Adsorpt. Sci. Technol. 2004;22:257–273. doi: 10.1260/0263617041503453. DOI

Goel J., Kadirvelu K., Rajagopal C., Garg V.K. Cadmium (II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 2006;45:6531–6537. doi: 10.1021/ie060010u. DOI

Motahari S., Nodeh M., Maghsoudi K. Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups. Desalin. Water Treat. 2016;57:16886–16897. doi: 10.1080/19443994.2015.1082506. DOI

Veselá P., Slovák V., Zelenka T., Koštejn M., Mucha M. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu (II) ions and phenol. J. Anal. Appl. Pyrolysis. 2016;121:29–40. doi: 10.1016/j.jaap.2016.06.016. DOI

Zhang X., Wei W., Zhang S., Wen B., Su Z. Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Sci. China Mater. 2019;62:1888–1897. doi: 10.1007/s40843-019-9473-2. DOI

Han Q., Chen L., Li W., Zhou Z., Fang Z., Xu Z., Qian X. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu 2+ from aqueous solution. Environ. Sci. Pollut. Res. 2018;25:34438–34447. doi: 10.1007/s11356-018-3409-9. PubMed DOI

Pan L., Wang Z., Yang Q., Huang R. Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials. 2018;8:957. doi: 10.3390/nano8110957. PubMed DOI PMC

Tabrizi N., Zamani S.J.W.S. Removal of Pb (II) from aqueous solutions by graphene, oxide aerogels. Water Sci. Technol. 2016;74:256–265. doi: 10.2166/wst.2016.213. PubMed DOI

Yu B., Xu J., Liu J.H., Yang S.T., Luo J., Zhou Q., Wan J., Liao R., Wang H., Liu Y. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 2013;1:1044–1050. doi: 10.1016/j.jece.2013.08.017. DOI

Chandra V., Park J., Chun Y., Lee J.W., Hwang I.C., Kim K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4:3979–3986. doi: 10.1021/nn1008897. PubMed DOI

Weng X., Wu J., Ma L., Owens G., Chen Z. Impact of synthesis conditions on Pb (II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J. 2019;359:976–981. doi: 10.1016/j.cej.2018.11.089. DOI

Fu W., Huang Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere. 2018;209:449–456. doi: 10.1016/j.chemosphere.2018.06.087. PubMed DOI

Wang X., Liu Y., Pang H., Yu S., Ai Y., Ma X., Song G., Hayat T., Alsaedi A., Wang X. Effect of graphene oxide surface modification on the elimination of Co (II) from aqueous solutions. Chem. Eng. J. 2018;344:380–390. doi: 10.1016/j.cej.2018.03.107. DOI

Pakulski D., Czepa W., Witomska S., Aliprandi A., Pawluć P., Patroniak V., Ciesielski A., Samorì P. Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. J. Mater. Chem. A. 2018;6:9384–9390. doi: 10.1039/C8TA01622D. DOI

Zheng Y., Cheng B., You W., Yu J., Ho W. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr (VI) ions. J. Hazard. Mater. 2019;369:214–225. doi: 10.1016/j.jhazmat.2019.02.013. PubMed DOI

Zhang N., Qiu H., Si Y., Wang W., Gao J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011;49:827–837. doi: 10.1016/j.carbon.2010.10.024. DOI

Yusuf M., Elfghi F.M., Zaidi S.A., Abdullah E.C., Khan M.A. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview. RSC Adv. 2015;5:50392–50420. doi: 10.1039/C5RA07223A. DOI

Wu W., Yang Y., Zhou H., Ye T., Huang Z., Liu R., Kuang Y. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 2013;224:1372. doi: 10.1007/s11270-012-1372-5. DOI

Leng Y., Guo W., Su S., Yi C., Xing L. Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012;211:406–411. doi: 10.1016/j.cej.2012.09.078. DOI

Ren Y., Yan N., Feng J., Ma J., Wen Q., Li N., Dong Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012;136:538–544. doi: 10.1016/j.matchemphys.2012.07.023. DOI

Hao L., Song H., Zhang L., Wan X., Tang Y., Lv Y. SiO2/graphene composite for highly selective adsorption of Pb (II) ion. J. Colloid Interface Sci. 2012;369:381–387. doi: 10.1016/j.jcis.2011.12.023. PubMed DOI

Zhao G., Ren X., Gao X., Tan X., Li J., Chen C., Huang Y., Wang X. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011;40:10945–10952. doi: 10.1039/c1dt11005e. PubMed DOI

Dai H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002;500:218–241. doi: 10.1016/S0039-6028(01)01558-8. DOI

Zhao Y.L., Stoddart J.F. Noncovalent functionalization of single-walled carbon nanotubes. Accounts Chem. Res. 2009;42:1161–1171. doi: 10.1021/ar900056z. PubMed DOI

Luo C., Wei R., Guo D., Zhang S., Yan S. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J. 2013;225:406–415. doi: 10.1016/j.cej.2013.03.128. DOI

Liang J., Liu J., Yuan X., Dong H., Zeng G., Wu H., Wang H., Liu J., Hua S., Zhang S., et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 2015;273:101–110. doi: 10.1016/j.cej.2015.03.069. DOI

Ren X., Chen C., Nagatsu M., Wang X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011;170:395–410. doi: 10.1016/j.cej.2010.08.045. DOI

Al-Khaldi F.A., Abusharkh B., Khaled M., Atieh M.A., Nasser M.S., Saleh T.A., Agarwal S., Tyagi I., Gupta V.K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 2015;204:255–263.

Shao D., Jiang Z., Wang X. SDBS modified XC-72 carbon for the removal of Pb (II) from aqueous solutions. Plasma Process. Polym. 2010;7:552–560. doi: 10.1002/ppap.201000005. DOI

Ren X., Shao D., Zhao G., Sheng G., Hu J., Yang S., Wang X. Plasma Induced Multiwalled Carbon Nanotube Grafted with 2-Vinylpyridine for Preconcentration of Pb (II) from Aqueous Solutions. Plasma Process. Polym. 2011;8:589–598. doi: 10.1002/ppap.201000192. DOI

Chen H., Li J., Shao D., Ren X., Wang X. Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J. 2012;210:475–481. doi: 10.1016/j.cej.2012.08.082. DOI

Yu J.G., Zhao X.H., Yu L.Y., Jiao F.P., Jiang J.H., Chen X.Q. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Chem. 2014;299:1155–1163. doi: 10.1007/s10967-013-2818-y. DOI

Kahrizi P., Mohseni-Shahri F.S., Moeinpour F. Adsorptive removal of cadmium from aqueous solutions using NiFe 2 O 4/hydroxyapatite/graphene quantum dots as a novel nano-adsorbent. J. Nanostructure Chem. 2018;8:441–452. doi: 10.1007/s40097-018-0284-3. DOI

Yan H.L., Ding J., Luan Z., Di J., Zhu Y., Xu C., Wu D., Wei B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41:2787–2792.

Van Oss C.J. A review of:“Active Carbon.” RC Bansal, JB Donnet and F. Stoeckli; Marcel Dekker, New York, 1988. pp. 482, $135.00. J. Dispers. Sci. Technol. 1990;11:323. doi: 10.1080/01932699008943255. DOI

Bahl O., Dhami T., Manocha L.M. Indo Carbon 2001—Conference (2001: Indian Carbon Society) Shipra; New Delhi, India: 2002. Advances in carbon and carbon materials.

Singh A., Lal D. Microporous activated carbon spheres prepared from resole-type crosslinked phenolic beads by physical activation. J. Appl. Polym. Sci. 2008;110:3283–3291. doi: 10.1002/app.28846. DOI

Mahmoud M.E., Khalifa M.A., Al-sherady M.A., Mohamed A.K., El-Demerdash F.M. A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions. Powder Technol. 2019;351:169–177. doi: 10.1016/j.powtec.2019.04.020. DOI

Cao F., Lian C., Yu J., Yang H., Lin S. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour. Technol. 2019;276:211–218. doi: 10.1016/j.biortech.2019.01.007. PubMed DOI

Eeshwarasinghe D., Loganathan P., Vigneswaran S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere. 2009;223:616–627. doi: 10.1016/j.chemosphere.2019.02.033. PubMed DOI

Li L.Y., Gong X., Abida O. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Manag. 2019;87:375–386. doi: 10.1016/j.wasman.2019.02.019. PubMed DOI

Anirudhan T.S., Sreekumari S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011;23:1989–1998. doi: 10.1016/S1001-0742(10)60515-3. PubMed DOI

Aguayo-Villarreal I.A., Bonilla-Petriciolet A., Muñiz-Valencia R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 2017;230:686–695. doi: 10.1016/j.molliq.2017.01.039. DOI

Dong L., Hou L., Wang Z., Gu P., Chen G., Jiang R. A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism. J. Hazard. Mater. 2018;359:76–84. doi: 10.1016/j.jhazmat.2018.07.030. PubMed DOI

Krishnamoorthy R., Govindan B., Banat F., Sagadevan V., Purushothaman M., Show P.L. Date pits activated carbon for divalent lead ions removal. J. Biosci. Bioeng. 2019;128:88–97. doi: 10.1016/j.jbiosc.2018.12.011. PubMed DOI

Jain M., Yadav M., Kohout T., Lahtinen M., Garg V.K., Sillanpää M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018;20:54–74. doi: 10.1016/j.wri.2018.10.001. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enzymatic degradation of cellulose in soil: A review

. 2024 Jan 15 ; 10 (1) : e24022. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace