Enzymatic degradation of cellulose in soil: A review
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38234915
PubMed Central
PMC10792583
DOI
10.1016/j.heliyon.2024.e24022
PII: S2405-8440(24)00053-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biofuel, Cellulases, Cellulose degradation, Lignocellulose,
- Publikační typ
- časopisecké články MeSH
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
Zobrazit více v PubMed
Lynd L.R., Weimer P.J., Van Zyl W.H., Pretorius I.S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002;66:506–577. PubMed PMC
Mishra P.K., Pavelek O., Rasticova M., Mishra H., Ekielski A. Nanocellulose-based biomedical scaffolds in future bioeconomy: a techno-legal assessment of the state-of-the-art. Front. Bioeng. Biotechnol. 2022;9 PubMed PMC
Wen X., Zheng Y., Wu J., Yue L., Wang C., Luan J., Wu Z., Wang K. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog. Nat. Sci.: Mater. Int. 2015;25:197–203.
Mishra P.K., Gregor T., Wimmer R. Utilising brewer's spent grain as a source of cellulose nanofibres following separation of protein-based biomass. Bioresources. 2016;12:107–116.
Klímek P., Wimmer R., Mishra P.K., Kúdela J. Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. J. Clean. Prod. 2017;141:812–817.
Stevenson F.J. John Wiley & Sons; 1994. Humus Chemistry: Genesis, Composition, Reactions.
Demi̇rbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources. 2005;27:327–337. doi: 10.1080/00908310390266643. DOI
Ruth L. Bio or bust? The economic and ecological cost of biofuels. EMBO Rep. 2008;9:130–133. doi: 10.1038/sj.embor.2008.6. PubMed DOI PMC
Kellner H., Vandenbol M. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One. 2010;5 PubMed PMC
Zheng H., Yang T., Bao Y., He P., Yang K., Mei X., Wei Z., Xu Y., Shen Q., Banerjee S. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol. Biochem. 2021;157
Lakhundi S., Siddiqui R., Khan N.A. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites Vectors. 2015;8:1–16. PubMed PMC
Walters K.E., Capocchi J.K., Albright M.B., Hao Z., Brodie E.L., Martiny J.B. Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning. ISME J. 2022;16:2295–2304. PubMed PMC
Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I.S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002;66:506–577. doi: 10.1128/mmbr.66.3.506-577.2002. PubMed DOI PMC
Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 2008;32:501–521. PubMed
Omenetto F.G., Kaplan D.L. New opportunities for an ancient material. Science. 2010;329:528–531. doi: 10.1126/science.1188936. PubMed DOI PMC
Habibi Y., Lucia L.A., Rojas O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 2010;110:3479–3500. PubMed
Wang J.-S., Wang G., Feng X.-Q., Kitamura T., Kang Y.-L., Yu S.-W., Qin Q.-H. Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 2013;3 doi: 10.1038/srep03102. PubMed DOI PMC
Lin S.-P., Loira Calvar I., Catchmark J.M., Liu J.-R., Demirci A., Cheng K.-C. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20:2191–2219. doi: 10.1007/s10570-013-9994-3. DOI
Dimarogona M., Topakas E., Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput. Struct. Biotechnol. J. 2012;2 PubMed PMC
Horn S.J., Vaaje-Kolstad G., Westereng B., Eijsink V. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels. 2012;5:45. PubMed PMC
Menendez E., Garcia-Fraile P., Rivas R. 2015. Biotechnological Applications of Bacterial Cellulases.
Alderson R.G., De Ferrari L., Mavridis L., L McDonagh J., Bo Mitchell J., Nath N. Enzyme informatics. Curr. Top. Med. Chem. 2012;12:1911–1923. PubMed PMC
Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995;3:853–859. PubMed
Payne C.M., Bomble Y.J., Taylor C.B., McCabe C., Himmel M.E., Crowley M.F., Beckham G.T. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J. Biol. Chem. 2011;286:41028–41035. doi: 10.1074/jbc.m111.297713. PubMed DOI PMC
Horn S.J., Sørlie M., Vårum K.M., Väljamäe P., Eijsink V.G.H. Measuring Processivity, Cellulases. 2012:69–95. doi: 10.1016/b978-0-12-415931-0.00005-7. PubMed DOI
Kubicek C.P., Kubicek E.M. Enzymatic deconstruction of plant biomass by fungal enzymes. Curr. Opin. Chem. Biol. 2016;35:51–57. doi: 10.1016/j.cbpa.2016.08.028. PubMed DOI
Silva C.O.G., Vaz R.P., Filho E.X.F. Bringing plant cell wall-degrading enzymes into the lignocellulosic biorefinery concept. Biofuels, Bioproducts and Biorefining. 2017;12:277–289. doi: 10.1002/bbb.1832. DOI
Munoz-Munoz J., Cartmell A., Terrapon N., Henrissat B., Gilbert H.J. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc. Natl. Acad. Sci. USA. 2017;114:4936–4941. PubMed PMC
McCarter J.D., Withers G.S. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 1994;4:885–892. PubMed
Bhat M.K., Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 1997;15:583–620. PubMed
Van Dyk J.S., Pletschke B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012;30:1458–1480. PubMed
Meyer A.S., Rosgaard L., Sørensen H.R. The minimal enzyme cocktail concept for biomass processing. J. Cereal. Sci. 2009;50:337–344.
Brodeur G., Yau E., Badal K., Collier J., Ramachandran K.B., Ramakrishnan S. Enzyme Research; 2011. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: a Review; p. 2011. PubMed PMC
Bischoff K.M., Rooney A.P., Li X.-L., Liu S., Hughes S.R. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 2006;28:1761–1765. doi: 10.1007/s10529-006-9153-0. PubMed DOI
Camassola M., De Bittencourt L.R., Shenem N.T., Andreaus J., Dillon A.J.P. Characterization of the cellulase complex ofPenicillium echinulatum. Biocatal. Biotransform. 2004;22:391–396. doi: 10.1080/10242420400024532. DOI
Haakana H., Miettinen-Oinonen A., Joutsjoki V., Mäntylä A., Suominen P., Vehmaanperä J. Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym. Microb. Technol. 2004;34:159–167. doi: 10.1016/j.enzmictec.2003.10.009. DOI
Yan S., Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol. Biofuels. 2013;6:177. doi: 10.1186/1754-6834-6-177. PubMed DOI PMC
Doi R.H., Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2004;2:541–551. doi: 10.1038/nrmicro925. PubMed DOI
Fontes C.M.G.A., Gilbert H.J. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 2010;79:655–681. doi: 10.1146/annurev-biochem-091208-085603. PubMed DOI
Rejon-Palomares A., Garcia-Garrido J.M., Ocampo J.A., Garcia-Romera I. Symbiosis; Philadelphia, Pa.)(USA): 1996. Presence of Xyloglucan-Hydrolyzing Glucanases (Xyloglucanases) in Arbuscular Mycorrhizal Symbiosis.
Schülein M. Enzymatic properties of cellulases from Humicola insolens. J. Biotechnol. 1997;57:71–81. doi: 10.1016/s0168-1656(97)00090-4. PubMed DOI
Chaabouni S.E., Belguith H., Hassairi I., M'Rad K., Ellouz R. Optimization of cellulase production by Penicillium occitanis. Appl. Microbiol. Biotechnol. 1995;43:267–269. doi: 10.1007/s002530050400. DOI
Jørgensen H., Eriksson T., Börjesson J., Tjerneld F., Olsson L. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzym. Microb. Technol. 2003;32:851–861. doi: 10.1016/s0141-0229(03)00056-5. DOI
Sadhu S. Cellulase production by bacteria: a review. Br. Microbiol. Res. J. 2013;3:235–258. doi: 10.9734/bmrj/2013/2367. DOI
Pandey A. Solid-state fermentation. Biochem. Eng. J. 2003;13:81–84. doi: 10.1016/s1369-703x(02)00121-3. PubMed DOI
Yoon L.W., Ang T.N., Ngoh G.C., Chua A.S.M. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy. 2014;67:319–338. doi: 10.1016/j.biombioe.2014.05.013. DOI
Orzua M.C., Mussatto S.I., Contreras-Esquivel J.C., Rodriguez R., de la Garza H., Teixeira J.A., Aguilar C.N. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crop. Prod. 2009;30:24–27. doi: 10.1016/j.indcrop.2009.02.001. DOI
Prasanna H.N., Ramanjaneyulu G., Reddy B.R. Optimization of cellulase production by Penicillium sp. 3 Biotech. 2016;6 doi: 10.1007/s13205-016-0483-x. PubMed DOI PMC
Wen Z., Liao W., Chen S. Production of cellulase/$\upbeta$-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 2005;40:3087–3094. doi: 10.1016/j.procbio.2005.03.044. PubMed DOI
Elisashvili V., Penninckx M., Kachlishvili E., Tsiklauri N., Metreveli E., Kharziani T., Kvesitadze G. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour. Technol. 2008;99:457–462. PubMed
Elisashvili V., Kachlishvili E., Tsiklauri N., Metreveli E., Khardziani T., Agathos S.N. Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J. Microbiol. Biotechnol. 2008;25:331–339. doi: 10.1007/s11274-008-9897-x. DOI
Maeda R.N., Barcelos C.A., Anna L.M.M.S., Pereira N. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J. Biotechnol. 2013;163:38–44. doi: 10.1016/j.jbiotec.2012.10.014. PubMed DOI
Han X., Song W., Liu G., Li Z., Yang P., Qu Y. Improving cellulase productivity of Penicillium oxalicum {RE}-10 by repeated fed-batch fermentation strategy. Bioresour. Technol. 2017;227:155–163. doi: 10.1016/j.biortech.2016.11.079. PubMed DOI
Arias J.M., Modesto L.F.A., Polikarpov I., Pereira N. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: optimization and synergism studies. Biotechnol. Prog. 2016;32:1222–1229. doi: 10.1002/btpr.2306. PubMed DOI
Rastegari A.A. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2018. Molecular mechanism of cellulase production systems in penicillium; pp. 153–166. DOI
Zhang F., Zhao X., Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 2018;247:676–683. PubMed
Lonsane B.K., Ghildyal N.P., Budiatman S., V Ramakrishna S. Engineering aspects of solid state fermentation. Enzym. Microb. Technol. 1985;7:258–265. doi: 10.1016/0141-0229(85)90083-3. DOI
Saha B.C., Kennedy G.J., Qureshi N., Cotta M.A. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production. Biotechnol. Prog. 2017;33:365–374. doi: 10.1002/btpr.2420. PubMed DOI
Wanzenböck E., Apprich S., Tirpanalan Ö., Zitz U., Kracher D., Schedle K., Kneifel W. Wheat bran biodegradation by edible Pleurotus fungi {\textendash} A sustainable perspective for food and feed. LWT. 2017;86:123–131. doi: 10.1016/j.lwt.2017.07.051. DOI
Zhou S., Herpoël-Gimbert I., Grisel S., Sigoillot J.-C., Sergent M., Raouche S. Biological wheat straw valorization: multicriteria optimization of Polyporus brumalis pretreatment in packed bed bioreactor. MicrobiologyOpen. 2017;7 doi: 10.1002/mbo3.530. PubMed DOI PMC
Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004;22:189–259. doi: 10.1016/j.biotechadv.2003.09.005. PubMed DOI
Štursová M., Žifčáková L., Leigh M.B., Burgess R., Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 2012;80:735–746. PubMed
Laskowski R., Berg B. Amsterdam; 2006. Litter Decomposition: Guide to Carbon and Nutrient Turnover.
Nannipieri P., Giagnoni L., Renella G., Puglisi E., Ceccanti B., Masciandaro G., Fornasier F., Moscatelli M.C., Marinari S. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils. 2012;48:743–762.
Himmel M.E., Adney W.S., Baker J.O., Elander R., McMillan J.D., Nieves R.A., Sheehan J.J., Thomas S.R., Vinzant T.B., Zhang M. Advanced bioethanol production technologies. Perspective. 1997:2–45. http://agris.fao.org/agris-search/search.do?recordID=US9742701 (Accessed 15 August 2014) PubMed
López-Mondéjar R., Zühlke D., Becher D., Riedel K., Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 2016;6:1–12. PubMed PMC
Datta R., Vranová V., Pavelka M., Rejšek K., Formánek P. Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int. Agrophys. 2014;28:119–124. doi: 10.2478/intag-2013-0034. DOI
Datta R., Anand S., Moulick A., Baraniya D., Pathan S.I., Rejsek K., Vranova V., Sharma M., Sharma D., Kelkar A., Formanek P. How enzymes are adsorbed on soil solid phase and factors limiting its activity: a Review. Int. Agrophys. 2017;31:287–302. doi: 10.1515/intag-2016-0049. DOI
Singh S., Moholkar V.S., Goyal A. International Scholarly Research Notices; 2013. Isolation, Identification, and Characterization of a Cellulolytic Bacillus Amyloliquefaciens Strain SS35 from Rhinoceros Dung; p. 2013. PubMed PMC
Ortiz Escobar M.E., Hue N.V. Temporal changes of selected chemical properties in three manure – amended soils of Hawaii. Bioresour. Technol. 2008;99:8649–8654. doi: 10.1016/j.biortech.2008.04.069. PubMed DOI
Tejada M., Gonzalez J.L., García-Martínez A.M., Parrado J. Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour. Technol. 2008;99:4949–4957. doi: 10.1016/j.biortech.2007.09.026. PubMed DOI
Hobbie S.E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems. 2000:484–494.
Žifčáková L., Větrovský T., Howe A., Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 2016;18:288–301. PubMed
Schimel J., Schaeffer S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012;3:348. PubMed PMC
You Y., Wang J., Huang X., Tang Z., Liu S., Sun O.J. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol. Evol. 2014;4:633–647. doi: 10.1002/ece3.969. PubMed DOI PMC
Tang Z., Sun X., Luo Z., He N., Sun O. Effects of temperature, soil substrate, and microbial community on carbon mineralization across three climatically contrasting forest sites. Ecol. Evol. 2018;8:879–891. doi: 10.1002/ece3.3708. PubMed DOI PMC
Chenu C., Stotzky G. Interactions between microorganisms and soil particles: an overview. Interactions between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem. 2001:3–40.
Juarez S., Nunan N., Duday A.-C., Pouteau V., Schmidt S., Hapca S., Falconer R., Otten W., Chenu C. Effects of different soil structures on the decomposition of native and added organic carbon. Eur. J. Soil Biol. 2013;58:81–90.
Negassa W.C., Guber A.K., Kravchenko A.N., Marsh T.L., Hildebrandt B., Rivers M.L. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS One. 2015;10 PubMed PMC
Maenhout P., Van den Bulcke J., Van Hoorebeke L., Cnudde V., De Neve S., Sleutel S. Nitrogen limitations on microbial degradation of plant substrates are controlled by soil structure and moisture content. Front. Microbiol. 2018;9:1433. PubMed PMC
Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. PubMed PMC
Rahman M.M., Tsukamoto J., Rahman M.M., Yoneyama A., Mostafa K.M. Lignin and its effects on litter decomposition in forest ecosystems. Chem. Ecol. 2013;29:540–553.
Mishra P.K., Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials. 2019;9:243. PubMed PMC
Ekielski A., Mishra P.K. Lignin for bioeconomy: the present and future role of technical lignin. Int. J. Mol. Sci. 2021;22:63. PubMed PMC
Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček Č. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. PubMed PMC
De Vries M., Schöler A., Ertl J., Xu Z., Schloter M. Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 2015;91:fiv069. PubMed
Cachada A., Rocha-Santos T., Duarte A.C. Soil Pollution. Elsevier; 2018. Soil and pollution: an introduction to the main issues; pp. 1–28.
Durães N., Novo L.A.B., Candeias C., Da Silva E.F. Soil Pollution. Elsevier; 2018. Distribution, transport and fate of pollutants; pp. 29–57.
Kabata-Pendias A. CRC press; 2000. Trace Elements in Soils and Plants.
Sharma K., Sharma S., Sharma V., Mishra P.K., Ekielski A., Sharma V., Kumar V. Methylene blue dye adsorption from wastewater using hydroxyapatite/gold nanocomposite: kinetic and thermodynamics studies. Nanomaterials. 2021;11:1403. doi: 10.3390/nano11061403. PubMed DOI PMC
Gupta A., Sharma V., Sharma K., Kumar V., Choudhary S., Mankotia P., Kumar B., Mishra H., Moulick A., Ekielski A., Mishra P.K. A review of adsorbents for heavy metal decontamination: growing approach to wastewater treatment. Materials. 2021;14:4702. doi: 10.3390/ma14164702. PubMed DOI PMC
Rajapaksha R.M.C.P., Tobor-Kaplon M.A., Baath E. Metal toxicity affects fungal and bacterial activities in soil differently. Appl. Environ. Microbiol. 2004;70:2966–2973. doi: 10.1128/aem.70.5.2966-2973.2004. PubMed DOI PMC
Klimek B. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination. Bull. Environ. Contam. Toxicol. 2012;88:617–622. PubMed PMC
Op De Beeck M., Lievens B., Busschaert P., Rineau F., Smits M., Vangronsveld J., Colpaert J.V. Impact of metal pollution on fungal diversity and community structures. Environ. Microbiol. 2015;17:2035–2047. PubMed
Wang Y., Shi J., Wang H., Lin Q., Chen X., Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 2007;67:75–81. PubMed
Li X., Meng D., Li J., Yin H., Liu H., Liu X., Cheng C., Xiao Y., Liu Z., Yan M. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution. 2017;231:908–917. PubMed
Haddad S.A., Lemanowicz J., Abd El-Azeim M.M. Cellulose decomposition in clay and sandy soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2019;16:3275–3290.
Bagnara C., Gaudin C., Belaich J.P. Physiological properties of Cellulomonas fermentans, a mesophilic cellulolytic bacterium. Appl. Microbiol. Biotechnol. 1987;26:170–176. doi: 10.1007/bf00253904. DOI
Clemmer J.E., Tseng C.-L. Identification of the major anaerobic end products ofCellulomonas sp. (ATCC 21399) Biotechnol. Lett. 1986;8:823–826. doi: 10.1007/bf01020832. DOI
Antoni D., Zverlov V.V., Schwarz W.H. Biofuels from microbes. Appl. Microbiol. Biotechnol. 2007;77:23–35. PubMed
Stutzenberger F. Bacterial cellulases. Microbial Enzymes and Biotechnology. 1990:37–70. doi: 10.1007/978-94-009-0765-2_2. DOI
Teeri T.T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 1997;15:160–167. doi: 10.1016/s0167-7799(97)01032-9. DOI
Ratanakhanokchai K., Waeonukul R., Pason P., Tachaapaikoon C., Kyu K.L., Sakka K., Kosugi A., Mori Y. Biomass Now-Cultivation and Utilization. IntechOpen; 2013. Paenibacillus curdlanolyticus strain B-6 multienzyme complex: a novel system for biomass utilization.
Bélaich J., Tardif C., Bélaich A., Gaudin C. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 1997;57:3–14. doi: 10.1016/s0168-1656(97)00085-0. PubMed DOI
Schwarz W.H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 2001;56:634–649. doi: 10.1007/s002530100710. PubMed DOI
Blum D.L., Kataeva I.A., Li X.-L., Ljungdahl L.G. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can Be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 2000;182:1346–1351. doi: 10.1128/jb.182.5.1346-1351.2000. PubMed DOI PMC
Tamaru Y., Doi R.H. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc. Natl. Acad. Sci. USA. 2001;98:4125–4129. doi: 10.1073/pnas.071045598. PubMed DOI PMC
Demain A.L., Newcomb M., Wu J.H.D. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 2005;69:124–154. doi: 10.1128/mmbr.69.1.124-154.2005. PubMed DOI PMC
Lamed R., Kenig R., Setter E., Bayer E.A. Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzym. Microb. Technol. 1985;7:37–41. doi: 10.1016/0141-0229(85)90008-0. DOI
Bayer E.A., Belaich J.-P., Shoham Y., Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 2004;58:521–554. doi: 10.1146/annurev.micro.57.030502.091022. PubMed DOI
Ding S.-Y., Bayer E.A., Steiner D., Shoham Y., Lamed R. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J. Bacteriol. 2000;182:4915–4925. doi: 10.1128/jb.182.17.4915-4925.2000. PubMed DOI PMC
Fanutti C., Ponyi T., Black G.W., Hazlewood G.P., Gilbert H.J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 1995;270:29314–29322. doi: 10.1074/jbc.270.49.29314. PubMed DOI
Bayer E.A., Lamed R., White B.A., Flint H.J. From cellulosomes to cellulosomics. Chem. Rec. 2008;8:364–377. doi: 10.1002/tcr.20160. PubMed DOI
Xu Q., Gao W., Ding S.-Y., Kenig R., Shoham Y., Bayer E.A., Lamed R. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J. Bacteriol. 2003;185:4548–4557. PubMed PMC
Shimon L.J.W., Yaron S., Shoham Y., Lamed R., Morag E., Bayer E.A., Frolow F. 1997. COHESIN-2 DOMAIN OF THE CELLULOSOME FROM CLOSTRIDIUM THERMOCELLUM. PubMed DOI
Handelsman T., Barak Y., Nakar D., Mechaly A., Lamed R., Shoham Y., Bayer E.A. Cohesin–dockerin interaction in cellulosome assembly: a single Asp‐to‐Asn mutation disrupts high‐affinity cohesin–dockerin binding. FEBS (Fed. Eur. Biochem. Soc.) Lett. 2004;572:195–200. PubMed
Poidevin L., Feliu J., Doan A., Berrin J.-G., Bey M., Coutinho P.M., Henrissat B., Record E., Heiss-Blanquet S. Insights into exo-and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl. Environ. Microbiol. 2013;79:4220–4229. PubMed PMC
Valjamae P. Faculty of Science and Technology; 2002. The Kinetics of Cellulose Enzymatic Hydrolysis; p. 781.
Wojciechowski M., Różycki B., Huy P.D.Q., Li M.S., Bayer E.A., Cieplak M. Dual binding in cohesin-dockerin complexes: the energy landscape and the role of short, terminal segments of the dockerin module. Sci. Rep. 2018;8:1–14. PubMed PMC
Lytle B., Myers C., Kruus K., Wu J.H. Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J. Bacteriol. 1996;178:1200–1203. doi: 10.1128/jb.178.4.1200-1203.1996. PubMed DOI PMC
Smith S.P., Bayer E.A. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr. Opin. Struct. Biol. 2013;23:686–694. PubMed
Webb E.C. Enzyme Nomenclature; 1992. International Union of Biochemistry and Molecular Biology.
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991;280:309–316. PubMed PMC
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. PubMed PMC
Sukharnikov L.O., Cantwell B.J., Podar M., Zhulin I.B. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol. 2011;29:473–479. PubMed PMC
Henrissat B., Teeri T.T., Warren R.A.J. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS (Fed. Eur. Biochem. Soc.) Lett. 1998;425:352–354. PubMed
Rafiei V., Vélëz H., Tzelepis G. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int. J. Mol. Sci. 2021;22:9359. PubMed PMC
Zhao Z., Liu H., Wang C., Xu J.-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 2013;14:1–15. PubMed PMC
Chen S., Xiong B., Wei L., Wang Y., Yang Y., Liu Y., Zhang D., Guo S., Liu Q., Fang H. Fungal Cellulolytic Enzymes. Springer; 2018. The model filamentous fungus Neurospora crassa: progress toward a systems understanding of plant cell wall deconstruction; pp. 107–134.
Ravachol J., Borne R., Tardif C., de Philip P., Fierobe H.-P. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J. Biol. Chem. 2014;289:7335–7348. PubMed PMC
Tomme P., Tilbeurgh H., Pettersson G., Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 1988;170:575–581. doi: 10.1111/j.1432-1033.1988.tb13736.x. PubMed DOI
Arantes V., Saddler J.N. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol. Biofuels. 2010;3:4. PubMed PMC
Reinikainen T., Ruohonen L., Nevanen T., Laaksonen L., Kraulis P., Jones T.A., Knowles J.K.C., Teeri T.T. Investigation of the function of mutated cellulose‐binding domains of Trichoderma reesei cellobiohydrolase I. Proteins: Struct., Funct., Bioinf. 1992;14:475–482. PubMed
Yaniv O., Petkun S., Shimon L.J.W., Bayer E.A., Lamed R., Frolow F. A single mutation reforms the binding activity of an adhesion-deficient family 3 carbohydrate-binding module. Acta Crystallographica Section D: Biological Crystallography. 2012;68:819–828. PubMed
Varnai A., Mäkelä M.R., Djajadi D.T., Rahikainen J., Hatakka A., Viikari L. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv. Appl. Microbiol. 2014;88:103–165. PubMed
Harris P.V., Welner D., McFarland K.C., Re E., Navarro Poulsen J.-C., Brown K., Salbo R., Ding H., Vlasenko E., Merino S., Xu F., Cherry J., Larsen S., Lo Leggio L. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large. Enigmatic Family, Biochemistry. 2010;49:3305–3316. doi: 10.1021/bi100009p. PubMed DOI
Müller G., Várnai A., Johansen K.S., Eijsink V.G., Horn S.J. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol. Biofuels. 2015;8:187. PubMed PMC
Vaaje-Kolstad G., Westereng B., Horn S.J., Liu Z., Zhai H., Sørlie M., Eijsink V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330:219–222. doi: 10.1126/science.1192231. PubMed DOI
Vaaje-Kolstad G., Horn S.J., van Aalten D.M.F., Synstad B., Eijsink V.G.H. The non-catalytic chitin-binding protein CBP21 fromSerratia marcescensIs essential for chitin degradation. J. Biol. Chem. 2005;280:28492–28497. doi: 10.1074/jbc.m504468200. PubMed DOI
Horn S., Vaaje-Kolstad G., Westereng B., Eijsink V.G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels. 2012;5:45. doi: 10.1186/1754-6834-5-45. PubMed DOI PMC
Harris P.V., Welner D., McFarland K.C., Re E., Navarro Poulsen J.-C., Brown K., Salbo R., Ding H., Vlasenko E., Merino S., Xu F., Cherry J., Larsen S., Lo Leggio L. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large. Enigmatic Family, Biochemistry. 2010;49:3305–3316. doi: 10.1021/bi100009p. PubMed DOI
Quinlan R.J., Sweeney M.D., Lo Leggio L., Otten H., Poulsen J.-C.N., Johansen K.S., Krogh K.B.R.M., Jorgensen C.I., Tovborg M., Anthonsen A., Tryfona T., Walter C.P., Dupree P., Xu F., Davies G.J., Walton P.H. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. USA. 2011;108:15079–15084. doi: 10.1073/pnas.1105776108. PubMed DOI PMC
Vu V.V., Ngo S.T. Copper active site in polysaccharide monooxygenases. Coord. Chem. Rev. 2018;368:134–157. doi: 10.1016/j.ccr.2018.04.005. DOI
Hemsworth G.R., Davies G.J., Walton P.H. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr. Opin. Struct. Biol. 2013;23:660–668. doi: 10.1016/j.sbi.2013.05.006. PubMed DOI
Kim S., Stahlberg J., Sandgren M., Paton R.S., Beckham G.T. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc. Natl. Acad. Sci. USA. 2013;111:149–154. doi: 10.1073/pnas.1316609111. PubMed DOI PMC
Kjaergaard C.H., Qayyum M.F., Wong S.D., Xu F., Hemsworth G.R., Walton D.J., Young N.A., Davies G.J., Walton P.H., Johansen K.S., Hodgson K.O., Hedman B., Solomon E.I. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA. 2014;111:8797–8802. doi: 10.1073/pnas.1408115111. PubMed DOI PMC
Bissaro B., Várnai A., Røhr Å.K., Eijsink V.G.H. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol. Mol. Biol. Rev. 2018;82 doi: 10.1128/mmbr.00029-18. PubMed DOI PMC
Phillips C.M., Beeson IV W.T., Cate J.H., Marletta M.A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 2011;6:1399–1406. PubMed