While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform (14)C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.
- MeSH
- Bacterial Proteins biosynthesis MeSH
- beta-Glucosidase biosynthesis MeSH
- Biodegradation, Environmental MeSH
- Biomass MeSH
- Cellulose 1,4-beta-Cellobiosidase biosynthesis MeSH
- Cellulose metabolism MeSH
- Hydrolysis MeSH
- Catechols metabolism MeSH
- Kinetics MeSH
- Lignin metabolism MeSH
- Populus chemistry MeSH
- Soil Microbiology * MeSH
- Carbon Radioisotopes MeSH
- Streptomyces enzymology isolation & purification MeSH
- Trees chemistry MeSH
- Xylosidases biosynthesis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2'-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H(2)O(2). The concentration of H(2)O(2) and the time of the stress application were optimized; hence, when 10 mmol/L H(2)O(2) was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.
- MeSH
- Enzymes metabolism secretion MeSH
- Fusarium enzymology metabolism MeSH
- Zea mays metabolism MeSH
- Culture Media chemistry MeSH
- Lignin metabolism MeSH
- Hydrogen Peroxide metabolism MeSH
- Gene Expression Regulation, Enzymologic MeSH
- Gene Expression Regulation, Fungal MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Although microbial inoculants are promoted as a strategy for improving compost quality, there is no consensus in the published literature about their efficacy. A quantitative meta-analysis was performed to estimate the overall effect size of microbial inoculants on nutrient content, humification and lignocellulosic degradation. A meta-regression and moderator analyses were conducted to elucidate abiotic and biotic factors controlling the efficacy of microbial inoculants. These analyses demonstrated the beneficial effects of microbial inoculants on total nitrogen (+30%), total phosphorus (+46%), compost maturity index (C:N ratio (-31%), humification (+60%) and the germination index (+28%). The mean effect size was -46%, -65% and -40% for cellulose, hemicellulose, and lignin respectively. However, the effect size was marginal for bioavailable nutrient concentrations of phosphate, nitrate, and ammonium. The effectiveness of microbial inoculants depends on inoculant form, inoculation time, composting method, and experimental duration. The microbial inoculant effect size was consistent under different feedstock types and experimental scales. These findings imply that microbial inoculants are important for accelerating lignocellulose degradation. Higher mean effect sizes have tended to be published in journals with higher impact factors, thus researchers should be encouraged to publish non-significant findings in order to provide a more reliable estimation of effect size and clarify doubts about the benefits of microbial inoculants for composting.
- MeSH
- Nitrogen analysis MeSH
- Composting * MeSH
- Lignin MeSH
- Soil MeSH
- Nutrients MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
In this work, the mesophilic bacterium Burkholderia sacchari, the halophilic bacterium Halomonas halophila, and the thermophilic bacterium Schlegelella thermodepolymerans were evaluated with regards to their suitability for polyhydroxyalkanoates (PHA) production from model media mimicking lignocellulose hydrolysates. B. sacchari was capable of utilizing all the tested "model hydrolysates", yielding comparable PHA titers and turning out as very robust against lignocellulose-derived microbial inhibitors. On the contrary, H. halophila reached substantially higher PHA titers on hexoses-rich media, while S. thermodepolymerans preferred media rich in pentoses. Both extremophiles were more sensitive to microbial inhibitors than B. sacchari. Nevertheless, considering substantially higher PHA productivity of both extremophiles even in the presence of microbial inhibitors and also other positive factors associated with utilization of extremophiles, such as the reduced risk of microbial contamination, both H. halophila and S. thermodepolymerans are auspicious candidates for sustainable PHA production from abundantly available, inexpensive lignocelluloses.
- MeSH
- Burkholderiaceae MeSH
- Comamonadaceae MeSH
- Halomonas * MeSH
- Lignin MeSH
- Polyhydroxyalkanoates * MeSH
- Publication type
- Journal Article MeSH
Pleurotus pulmonarius was cultivated on a corncob-based substrate for producing of mushrooms and for assessing the transformation of the lignocellulosics during the development of fungal biomass. Associated events, such as the release of relevant enzymes and the H2O2 generation, were also monitored. The peaks of laccase and catalase activities occurred at the 5th day and that of Mn peroxidase at the 30th day, simultaneously with a high activity of superoxide dismutase. Increase in the endocellulase and xylanase activities was observed after 10 days, with maximal activities achieved during the 20-30-day period. Maximal values of H2O2 were found after 10 days of cultivation. Electron microscopy and Fourier transform infrared (FTIR) spectroscopy showed strong alterations in the lignocellulosic fibers. The uncultivated and the cultivated substrates at different times were hydrolyzed with commercial cellulase and β-glucosidase. The highest values of reducing sugars (110.5 ± 5.6 μmol/mL), being 65 % glucose, were obtained using the 20-day cultivated substrate. After the fruiting stage (first flush), enzymatic hydrolysis of the spent mushroom substrate (SMS) yielded 53.0 ± 2.8 and 77.5 ± 4.0 μmol/mL of glucose and total reducing sugars, respectively. Although the release of reducing sugars of the P. pulmonarius SMS was lower than that obtained after 20 days of cultivation, it was still 50 % higher than that obtained using the uncultured substrate. This observation, combined with the fact that SMS constitutes a residue generated as a by-product of the depletion of an agro-industrial residue, allows to conclude that this material offers an interesting economic perspective for the obtainment of cellulosic ethanol.
Liquid cultures with cellulose and solid state fermentation cultures on wheat straw of the white-rot fungi Pleurotus ostreatus and Trametes versicolor and the brown-rot fungus Piptoporus betulinus were assayed for the free and solid fraction-bound activity of lignocellulose-degrading enzymes. The majority of the ligninolytic enzymes laccase and Mn peroxidase was detected in the free fraction of P. ostreatus and T. versicolor. The endocleaving enzymes endo-1,4-beta-glucanase, endo-1,4-beta-mannanase and endo-1,4-beta-xylanase were detected almost exclusively in the free fraction, while significant amounts of 1,4-beta-glucosidase, cellobiohydrolase, 1,4-beta-xylosidase and 1,4-beta-mannosidase were present in the bound fraction depending on the mode of cultivation and the species. The bound enzymes accounted for 66% of the total activity in P. ostreatus straw cultures, 35% in T. versicolor and only 8% in P. betulinus. The enzymes also showed significant differences in freeze-drying stability. Hydrolases in general showed high stability, whereas laccase and Mn peroxidase of P. ostreatus were the least stable.
- MeSH
- Cellulases analysis MeSH
- Cellulose metabolism MeSH
- Enzymes analysis MeSH
- Financing, Organized MeSH
- Fungal Proteins analysis MeSH
- Glycoside Hydrolases analysis MeSH
- Culture Media chemistry MeSH
- Laccase analysis MeSH
- Lignin metabolism MeSH
- Freeze Drying MeSH
- Peroxidases analysis MeSH
- Pleurotus enzymology MeSH
- Polyporales enzymology MeSH
- Enzyme Stability MeSH
The wood-decomposing fungal species Antrodia macra, A. pulvinascens, Ceriporiopsis aneirina, C. resinascens and Dichomitus albidofuscus were determined for production of laccase (LAC), Mn peroxidase (MnP), lignin peroxidase (LiP), endo-l,4-P-beta-glucanase, endo-l,4-beta-xylanase, cellobiohydrolase, 1,4-beta-glucosidase and 1,4-beta-xylosidase. The results confirmed the brown-rot mode of Antrodia spp. which did not produce the activity of LAC and MnP. The remaining species performed detectable activity of both enzymes while no strain produced LiP. Significant inhibition of LAC production by high nitrogen was found in all white-rot species while only MnP of D. albidofuscus was regulated in the same way. The endoglucanase and endoxylanase activities of white-rotting species were inhibited by glucose in the medium while those of Antrodia spp. were not influenced by glucose concentration. The regulation of enzyme activity and bio-mass production can vary even within a single fungal genus.